
2021 International Seminar on Electron Devices Design and Production (SED) 
 

978-1-6654-3941-1 @2021 IEEE 

An Academic Framework for IC Physical Design 
Algorithms Development 

 

Dmitry Bulakh, Andrey Korshunov 
Department of IC design  

National Research University of Electronic Technology 
Zelenograd, Moscow, Russian Federation 

dima@pkims.ru, korshun@gmail.com 

Anton Datsuk 
IHP - Leibniz-Institut für innovative Mikroelektronik  

Frankfurt (Oder), Germany 
datsuk@ihp-microelectronics.com

Abstract—Analyzing electronic design automation (EDA) 
computer aided design (CAD) contests it can be seen that the 
dominant part of tasks and problems belongs to physical design. 
This is due to the increments of the complexity of semiconductor 
devices that discovers an increasing number of new problems to 
be solved in nanometer scale layouts. As the number of the tasks 
and their complexity grows the new EDA tools should enhanced 
to solve the main algorithmic tasks. In this paper we present a 
new extensible EDA framework for physical level design 
algorithms development, testing and implementation. The 
framework provides ready-made solutions for secondary, 
auxiliary tasks such as file I/O and layout data manipulation. 
Developed EDA framework was integrated in educational 
process and made it possible to develop physical design 
algorithms using technological files. 

The reported study was done with a support of the state 
assignment of MIET (Theme No. FSMR-2020-0017/AAAA-A20-
120071490038-5) 

Keywords—Electronic Design Automation, Computer Aided 
Design, Physical Design, IC Layout 

I. INTRODUCTION 
Integrated circuits (IC) design more and more requires the 

use of a computer-aided automation. This leads to 
development of new electronic design automation software 
tools, which take into account new physical effects, utilize 
modern computing capabilities, process large volumes of data. 
At the same time, some parts of the software, mostly service 
procedures and functional blocks, that provide main 
algorithms function preparation, remain unchanged. 

Development of the algorithms is related to the physical 
design that requires many service procedures of this kind. For 
example, functional blocks are responsible for layout data 
import and export/import from/to files, functional blocks for 
various kinds of layout data processing (cells and layers 
manipulation) and so on. 

Speaking about educational process in high education 
institutions, we often meet a situation when the use of real 
input files (e.g., technological files in binary and bulky text 
formats, for example GDSII and LEF/DEF) are ignored due 
to their complexity in favor of simpler textual file formats 
(rephrase). These file formats have much easier internal 
structure, usually contain only minimal required set of data 
and are easier to read, write and understand. The main idea of 
this approach is to avoid wasting time for understanding the 
file format, thus spending more time for implementation and 
debug of algorithms. 

The developed algorithms are designed to work fine on a 
small and simple example input files but cannot be run on real 
layouts with all their specifics and much bigger volumes of 
data. 

Many CAD contests give as the input data files in real 
technological formats [1-2]. The files can be processed based 
on several open-source libraries, which provide an access to 
binary data and technological layout formats. However, all of 
these libraries work with different data structures and do not 
provide ability to read different file formats into a single data 
structure. This complicates usage of these data for the 
algorithms. In other words, the implementation of open-
source libraries binds programmers to only one input file 
format and blocks the capability to apply these libraries for 
multi-format file reading. 

The optimal solution is to develop a library that supports a 
functionality to process different formats and to store layout 
information in a single data structure. 

In this paper, we developed graphical PDLab (Physical 
Design Laboratory) framework that helps to solve the 
aforementioned problems.  

By framework, we mean the following: 

• a possibility of usage the basic built-in modules and 
blocks for layout data manipulation which are not 
related directly to the developing layout processing 
algorithms (for example modules for reading and 
writing binary files, different kinds of layout 
processing and others); 

• an extension of the basic functionality of a 
framework by development of external modules that 
can communicate with both embedded and user 
modules, provide layout data transfer between the 
modules and so on; 

• an opportunity to build an «algorithmic flow» to either 
process or verify physical designs and to control the 
results at each step of the flow. 

II. FRAMEWORK INTERNALS 

A. Using framework to build a flow 
The framework consists of a graphical user interface 

(GUI) application and a set of libraries for development of 
user-defined modules using the embedded API. The main 
interface of PDLab framework is shown in Fig.1. 

The interface provides four main work areas: 

• a list of available integrated basic modules (or flow 
items) (1), these modules can be placed and connected 
in main working area to build an algorithmic flow; 

• main working area (2); 

• a log area console to display the application messages 
with the support of Lua scripting language to control 
configuration of PDLab (3); 



2021 International Seminar on Electron Devices Design and Production (SED) 
 

• an information window (4) to display information 
about selected flow item. 

The flow items window (1) contains a tab widget to 
display both the basic modules provided with the application 
and the user-defined ones. The user modules are supposed to 
be implemented as a dynamic-link library. The provided 
dynamic-link library exports specific data described below. 

To build an algorithm flow it is needed to place all of the 
required flow items from the «Flow items» window into main 
working area and then to connect them in correct sequence. 
An example of a flow is shown in Fig.2. 

This figure shows a flow performing logic AND operation 
on a selected layer. The layer geometry information can be 
extracted from different layout sources. First layout was taken 
from input file «Test_01.gds» (operation performed by flow 
item «Import»). Second layout was edited manually using 
external layout editor (operation performed by flow item 
«Edit»). From the layout that was red several layers extracted 
(operation performed by flow item «Extract»). The result of 
this operation is saved to the output file «result.gds». In this 
example we assume that extracted layer from the left branch 
of the flow has the same identifier (name or number) as the 
edited one from the right branch. The logical AND operation 
is implemented by merging geometries from both layout 
sources. 

 
Fig.1. Physical Design Lab interface 

 
Fig.2. Example flow with build-in I/O flow items, layers manipulation item 

and logic operation item 

 

 

B. Software architecture 
The developed framework is build using the module 

architecture approach and it is shown in Fig.3.  

The core module of the application is a GUI developed in 
C++ based on a cross-platform Qt library which is often used 
for educational projects [3]. 

The user flow items and the integrated modules are 
embedded by using an external static library. The libraries 
contain an implementation of graphical flow item and an 
access to the layout data.  

C. Accessing layout data 
Library «Layout.lib» provides an interface and a data 

structure to read, store and write layout data. It supports 
reading capability for different layout formats. The 
implementation guarantees that the extracted layout 
information from the sources of any kind stores the data in the 
same structure. 

Simplified UML diagram of layout class’s relationship is 
presented in Fig.4. 

To read and write layout data the library provides a set of 
functions that perform import and export operations for layout 
stored in different formats. 

 
Fig.3. Framework architecture 

 
Fig.4. Layout classes UML diagram 

 

 



2021 International Seminar on Electron Devices Design and Production (SED) 
 

 

D. Implementing flow item 
To implement a user-defined flow item a developer 

implements a new class and inherits it from the base abstract 
class AbstractFlowItem. 

An example of a simplified code inherited from 
AbstractFlowItem is given in listing 1. There are four 
mandatory functions provided by the class, which are 
expected to be overwritten by the user. These functions are 
callbacks. They are called by PDLab application when either 
a flow item is placed into the main working area or a user 
executes or resets a flow item or a user opens its properties 
dialog. 
class FlowItem_Import : public AbstractFlowItem { 
public: 
  bool OnHandleEvent_Drop() override final; 
  bool OnHandleEvent_Execute() override final; 
  bool OnHandleEvent_Reset() override final; 
  bool OnHandleEvent_Properties() override final; 
public: 
  void GetInfoString(QString &info) override final; 
}; 

Listing 1. An example of code inheritance for the «Input» flow item 

Each of the flow items may contain input and output pins, 
which are used to connect the flow item during layout 
development. A flow items provides additional string areas to 
display an important information. The «execute flow item» 
and «open properties dialog» buttons were developed to 
invoke the flow item and call the properties dialog window 
respectively. An interface of different type flow items is 
shown in Fig.5. 

Each of the flow items may be executed in either 
standalone or a complete mode. In case of a standalone mode 
all the flow item that precede the executed one are invoked. 
The complete mode executes all flow items placed into the 
main PDLab interface. These two scenarios can be 
demonstrated using Fig. 2. In case user executes «AND» flow 
item then all the preceding items («EXTRACT», «IMPORT» 
and «EDIT») are also launched. However, the flow item 
«EXPORT» is not invoked. To execute all items the complete 
mode needs to be run. 

The AbstractFlowItem class contains additional functions 
to assign input and output ports, information strings and layout 
data. 

To get an access to the information saved after execution 
in the preceding flow items the input pins are used. The flow 
graph shown in Fig. 6 demonstrate this use case. The flow item 
«AND» grands access to the Test_01.gds data of the left 
«IMPORT» flow item by clicking on the left input pin. To 
access the layout data information of Test_02.gds file the ritgh 
pin needs to be selected respectively. The approach helps to 
manipulate layout data on different steps using various flow 
item controllers. The data can be also transmitted to the other 
controllers using the output pins of the flow item module. 

Each flow item can have one of two possible states not yet 
executed (Fig.6, a) and already executed and it has results to 
display (Fig.6, b). If a flow item has was executed, but the 
execution failed, its status return to «not yet executed». 

 
Fig.5. Flow items with only output pins (a), only input pins (b), both types of 

pins (c) and variable number of input pins(d). 

 
Fig.6. Flow items with different statuses 

III. LAYOUT PROCESSING 
This section of the article demonstrates a use case of layout 

data processing using PDLab software by using XOR2 design 
example (Fig. 7). An extraction of specific layers set extracted 
from the GDSII input file is shown using an external freeware 
layout viewer KLayout [4]. The design flow task to extract a 
set of metal layers from the GDSII layout file is presented in  
Fig.8. 

When the «Import» flow item is invoked, the «Extract» 
flow item gets an access to the extracted layout data by 
selecting its input pin. Then the extracted list of layers from 
the input file are displayed in the «Extract» options dialog 
window. On selecting some layers to be extracted the 
«Extract» flow item could be run. Fig.8 shows that layers 49 
and 51 are selected for the extraction.  

The extracted layout data are exported in a separate file 
that is assigned to the «Export» flow item. The result of such 
flow is illustrated in Fig.9. The processed data could not only 
be saved, but they could also be used in the next flow 
operations. This use case is shown in Fig. 10. 

 
Fig.7. XOR2 GDSII file opened in KLayout 



2021 International Seminar on Electron Devices Design and Production (SED) 
 

 
Fig.8. PDLab interface with layout layers dialog interface 

 
Fig.9. Result layout of a flow 

 
Fig.10. Multiple layout manipulations 

IV. CONCLUSION 
The presented software approach simplifies the process of 

algorithms development and verification applied for IC layout 
designs. 

The solution proved to be useful and important for 
academic community. It allows getting a visual control and a 
clear representation of flow steps that are performed for layout 
processing. The PDLab framework allows to avoid any layout 
preparation tasks and gives user an opportunity to focus on 
algorithms development. 

REFERENCES 
 

[1] M. Kim, S. Huang, R. Lin and S. Nakatake, "Overview of the 2017 
CAD contest at ICCAD: Invited paper," 2017 IEEE/ACM International 
Conference on Computer-Aided Design (ICCAD), Irvine, CA, 2017, 
pp. 855-856, doi: 10.1109/ICCAD.2017.8203867. 

[2] U. Schlichtmann, S. Das, I. Lin and M. P. Lin, "Overview of 2019 CAD 
Contest at ICCAD," 2019 IEEE/ACM International Conference on 
Computer-Aided Design (ICCAD), Westminster, CO, USA, 2019, pp. 
1-2, doi: 10.1109/ICCAD45719.2019.8942133. 

[3] I. Mezei, "Cross-platform GUI for educational microcomputer 
designed in Qt," 2017 IEEE East-West Design & Test Symposium 
(EWDTS), Novi Sad, 2017, pp. 1-4, doi: 
10.1109/EWDTS.2017.8110109. 

[4] KLayout Layout Viewer and Editor «About the Project» page. URL: 
https://www.klayout.de/intro.html (Access date: 29.01.2021). 

 

 


	I. Introduction
	II. Framework Internals
	A. Using framework to build a flow

	I. Introduction
	II. Framework Internals
	A. Using framework to build a flow
	D. Implementing flow item

	III. Layout processing
	IV. CONCLUSION
	References


