
2021 International Seminar on Electron Devices Design and Production (SED)

978-1-6654-3941-1 @2021 IEEE

The Basics of Digital System Designs Simulation

for Hardware/Software Joint Debugging

Alexander Ivannikov

The Institute for Design Problems in Microelectronics of

Russian Academy of Sciences

Moscow, Russian Federation

adi@ippm.ru

Alexander Stempkovskiy

The Institute for Design Problems in Microelectronics of

Russian Academy of Sciences

Moscow, Russian Federation

stal09@ippm.ru

Abstract—Based on the analysis of the features of modern

digital systems, the structure of a system for joint

hardware/software simulation on functional-logic level are

described. The purpose of the simulation is to debug a design of

digital system before production. A hardware mathematical

model is proposed, taking into account the peculiarities of

modern digital systems, namely: the presence of bidirectional

buses, high-impedance state of the outputs, internal memory of

blocks. It is shown that the joint hardware/software simulation

is reduced to solving systems of logical equations at each cycle of

simulation.

Keywords—digital systems design, functional logic simulation,

design debugging, hardware mathematical model, logical

equation systems, solving by iteration

I. INTRODUCTION

In the last decade, foreign computer-aided design (CAD)
systems are mainly used for the design of domestic digital
microelectronic systems. These systems are well developed
and provide efficient and high-quality design. They are
accredited by foreign factories that manufacture integrated
circuits.

However, in modern conditions the task of import
substitution is very acute. Even in the case of the manufacture
of integrated circuits abroad, it is desirable that the design
was carried out using domestic means that guarantee the
correct functioning of the product in all modes. It is especially
important for modern domestic developments to take into
account, when designing, various destabilizing effects on the
designed products and ensure their high stability in this case.
In this regard, the task of developing methods, algorithms and
automation tools for the design of digital super large
integrated circuits (VLSI) for special purposes, highly
resistant to various destabilizing influences, as well as the
creation of domestic CAD systems on this basis, is an urgent
task.

In this article, we will consider only one stage in the
design of digital systems, namely the joint debugging of
hardware and software and firmware using the simulation
method [1-4]. At the same time, in order to create the
specified subsystem of the domestic CAD system, it is
necessary to formulate the requirements and basic principles
for constructing this CAD subsystem, taking into account the
accumulated design experience, which is the task of this
work.

The experience gained at present in digital circuits
simulation can be used to build a system for digital systems
simulation intended for joint debugging of hardware and
software and firmware [5-8].

II. FEATURES OF MODERN DIGITAL SYSTEMS THAT

DETERMINE THE REQUIRMENTS FOR A SIMULATION SYSTEM

The task of joint development and debugging of hardware
and software or firmware of digital systems at the design
stage can be solved by their joint simulation. The debugging
process in this case consists of the following stages [9-11]:

- obtaining a software model (emulator) of a digital
system hardware or its blocks;

- compilation of a program or microprogram into a
sequence of logical signals fed to the inputs of a digital
system or its blocks, or a set of states of memory cells;

- cycle-by-cycle simulation of the operation of a digital
system or its blocks;

- analysis of output and internal logic signals of a digital
system or its blocks, current states of memory cells and
registers.

Let us formulate the features of modern digital systems
that determine the basic principles of building a simulation
system of the considered level (Fig. 1).

a)

b)

Fig. 1. Representation of signals in functional-logic simulation:

a) timing diagrams of signals;

b) quasi-time diagrams obtained as a result of synchronous simulation

Sync

pulses

Signal 1

Signal 2

Signal 3

Sync

pulses

Signal 1

Signal 2

Signal 3

2021 International Seminar on Electron Devices Design and Production (SED)

1. When debugging a digital system, the developer must
be able to control the logic signals at the LSI block outputs,
as well as monitor changes in the states of the system's
memory elements - memory cells and registers. In this regard,
the simulation of the entire digital system should be carried
out at the level of logical signals at the LSI block outputs, and
the block simulation at the functional level, that is, to provide
an adequate description of the logical signals at the LSI block
outputs and register states [12-14]. In this case, the adequacy
of the structure of the block model to its internal logical
structure is not obligatory.

2. The vast majority of digital systems are built in such a
way that all changes in logic signals caused by the arrival of
a sync pulse or some other input signal are completed before
the arrival of the next sync pulse or input signal. In this
regard, it is advisable that the stage of checking timing
diagrams to determine the required duration of the
synchronization cycle, identifying "races" and risks of
failures should precede the stage of joint debugging of the
structure of hardware and software and firmware, that is, the
stage of structural and logical debugging [15, 16]. This
separation makes sense because of the different debugging
strategies used in the two phases. When checking timing
diagrams, it is possible not to distinguish between commands
of the same type, but to simulate only the intervals between
the appearance of signals [17-20]. At the same time, for
structural and logical debugging, in order to save machine
time, it is preferable to use synchronous functional logical
modeling. In the process of such simulation, the developer
can obtain quasi-time diagrams of logical signals at the
outputs of all LSI blocks (Fig. 2).

Fig. 2. The structure of the system of functional-logic simulation of digital

systems

3. A digital system contains, as a rule, from several LSI
blocks to several hundred LSI blocks, which are complete
subsystems. In this regard, the functional diagram of the
technical means is actually a schematic diagram and can be

quite simply specified by a list of electrical circuits.

4. Since a limited set of LSI blocks and components is
used in the design of a digital system, a description of their
functioning can be performed once. The resulting software
models must be entered into the library of general-use block
models.

5. The requirement for the convenience of dealing with
the hardware model, the need for easy changes in this model
determines the interpretive nature of the simulation. In this
case, the hardware model is a certain data structure containing
information about the blocks connections, the blocks internal
states and the names of the signals.

6. The overwhelming majority of digital systems have a
bus structure. All lines, for example, an address bus or a data
bus, are connected in the same way. In addition, it is more
convenient to analyze information on the bus lines and in the
registers, considering this information as one variable with 2n
states, where n is the number of lines in the bus. In this regard,
when specifying a connection diagram and in modeling, the
signals of lines combined into buses should be considered as
one multi-valued signal, and the contents of multi-digit
registers - as one variable [4, 21]. One of the states of the bus
signal, in particular, may be a state with a high output
impedance. This approach allows you to reduce the amount
of memory required to store the values of signals and
variables, since for storing the values of signals and variables,
multiples of a byte of memory are used.

7. Models of digital LSI blocks should take into account
the bidirectionality of a number of buses and lines, when,
depending on the internal state of the blocks, the same pin can
be both input and output.

8. When connecting the conclusions of several blocks,
various logical functions can be implemented, namely: "wire
AND"; wired "OR"; combining, typical for systems with a
common bus, when only one output is active, and the rest
must be in a state with high output impedance; prohibition of
combining block outputs. A simulation system based on the
type of block outputs being combined should distinguish
between these cases and, in case of violation of the
established rules (for example, when conflicting signals
appear at the block combined outputs), give an error
indication.

9. Due to the high laboriousness of developing LSI
models, specialized languages for describing the functioning
of LSI blocks and translators from these languages are
needed.

10. When designing digital devices, you can also use
already debugged blocks containing several blocks of a lower
level. In this case, it is advisable to use functional
macromodels of blocks that do not allow changes and do not
provide access to signals at the internal nodes of the block,
but reduce the computer time compared to simulating the
block as a connection of separate subblocks [14, 22, 23].

11. An integral part of the simulation system is the
programming and microprogramming automation subsystem.
Strict requirements for the timing characteristics of the
software and firmware of specialized digital systems
necessitate its development in assembly language. However,
in some cases it is advisable to use high-level languages. The
programming automation subsystem includes an assembler, a
micro-assembler, and translators from high-level languages,

Circuit

diagram

Block

description

Block model

compiler

Librarian

program

Library of

block models

System

model

compiler

Model

Simulation

program

 (interpreter)

Results

output

 block

Diagnostic

messages

Model

modification

compiler

External

influences

compiler

User

interface

Modification

description

External

influences

description

Information

output

requirements

Simulation

results

2021 International Seminar on Electron Devices Design and Production (SED)

which provide the states of the memory cells in which the
program is stored, or the signal sequences coming from the
microprogram memory. When developing firmware, it is
advisable to have a micro-assembler tuned to a series of
microprogrammed blocks and a specific digital system. The
system is configured by setting the size of the control fields,
assigning semantic mnemonic symbols to different field
values, and defining the default field values.

12. The system for joint simulation of hardware and
software and firmware should have convenient means for
setting the conditions for issuing information about logical
signals and states of registers and memory cells, modifying
these states, setting tracing modes, for storing and restoring
the state of a digital system, automated generation of test
examples [5, 12, 13, 15].

III. THE PROPOSED MATHEMATICAL MODEL OF DIGITAL

SYSTEMS HARDWARE

Consider a mathematical model of a digital system
hardware, compiled taking into account the formulated
requirements.

The LSI model or block m includes the following
components.

1. The set of variables P, which we will call terminal
variables. Each terminal variable p can take values from a
finite set Zp. Terminal variables correspond to signals at the
outputs of the LSI blocks.

2. The set of internal variables R, each of which can
take values from the finite set Gr. Internal variables
correspond to block registers. The Cartesian product ∏ 𝐆𝑟𝑟∈𝐑
forms the set of internal states of A.

3. Mapping the sets A into the set of subsets P, that is,
𝛤: 𝐀 → {𝐏′}, 𝐏′ ∈ 𝐏, where 𝐏′ is the set of input variables,
𝐏′′ = 𝐏/𝐏′ is the set of output variables, Xa=∏ 𝐙𝑝′𝑝′∈𝐏′ - set

of input states, Ya=∏ 𝐙𝑝′′𝑝′′∈𝐏/𝐏′ - set of output states.

4. For each 𝑎ϵ𝐀, the following mappings are defined:
H:(Xa,A)→ 𝐘𝑎; W:(Xa,A)→A.

Thus, the model is m=(P,{Zp},R,{Gr},𝛤,H,W).

When the models are combined, a network S is formed,
which includes the following components.

1. The set of models M={mi}. We denote by V=⋃ 𝐏𝑖𝑖
the set of terminal variables of all models.

2. The set of nodes U.
3. The set PS of terminal variables of the network, each

of which can take values from a finite set PS Z.
4. The mapping Q:VS→U, where VS=V∪ 𝐏S, is such

that all terminal variables vS∈ 𝐕S mapped to the same element
u have the same range of values Zu, that is, (∀𝑢)(𝑢 =
Q(𝑣S

′)&u=Q(𝑣S
′′) → 𝐙𝑣S

′ =𝐙𝑣S
′′=𝐙𝑢.

5. Partially defined union functions Fu(𝑣S1, … , 𝑣S𝑗 , …),

given for each node u∈ 𝐔. Here 𝑣S1, … , 𝑣S𝑗 , … are all output

variables of the models and input variables of the network
mapped to the node u. The range of Fu is 𝐙𝑢.

Thus, S=(M, U, PS, {Zp}, Q, {Fu}).

 The block diagram of the algorithm for digital systems
simulation using the introduced models is shown in Fig. 3.

The network S is a model �̃� of some block under the
following conditions [24].

1. The set of internal variables �̃� ⊇ ⋃ 𝐑𝑖. Each of the

internal variables can take values from 𝐆�̃�, �̃� ∈ �̃�. Then �̃� ⊇
∏ 𝐀𝑖𝑖 .

2. The set of terminal variables �̃�=PS, and the equality
holds:

P=PS={𝑝S|
(∀𝑢)((∃𝑝S) 𝑢 = Q(𝑝S)

⋃(∀�̃�) × (∃𝑖, 𝑣)𝑣 ∈ 𝐏𝑖
′′, 𝑢 = Q(𝑣))

}.

This condition requires that each node u, for any state �̃� ,
correspond to at least one output variable of some model or
at least one terminal variable of the network.

3. The mapping Γ̃:�̃� → {�̃�’}, �̃�’⊆ �̃�, assigns to each

�̃� ∈ �̃� variable set

�̃�'={�̃�′|
(∀𝑢) (∃𝑝S

′) 𝑢 = Q(𝑝S
′)

 ∪ (∀�̃�) × (∃𝑖, 𝑣) 𝑣 ∈ 𝐏𝑖
′′, 𝑢 = Q(v))

}

Moreover, for any �̃�, each node u corresponds to at least

one input variable of the model �̃� or an output variable of

some model 𝑚𝑖. The set �̃��̃�=∏ �̃��̃�′�̃�′∈�̃�′ is the set of input

states, the set �̃��̃�=∏ �̃��̃�′�̃�′′∈�̃�/�̃�′ is the set of output states.

4. The values of the input variables of the models mi,
namely 𝑝′ ∈ 𝐏𝑖

′ , are equal to the values of the functions
𝐹𝑢(vS1,…,vSj,…), where u=Q(𝑝′), and the values of the output

variables of the network �̃�′′ ∈ �̃�′′ - the values of the functions
Fu(vS1,…,vSj,…), where u=Q(�̃�′′), and vS1,…,vSj,… take only
those values for which Fu are defined.

5. Maps H̃:(�̃��̃�,�̃�)→ �̃��̃�; W̃:(�̃��̃�,�̃�) → �̃� exist.

Let us consider condition 5 in more detail. For the

existence of the mappings H̃, W̃ it is sufficient that for known
�̃� and �̃�′ all terminal variables of the models mi are defined.

In this case, the existence of H̃ follows from the fulfillment

of condition 4, and the existence of W̃ from the existence of
the mappings Wi.

The mappings Hi:(Xa,A)→Ya for a fixed aϵA are a set of
multivalued logical functions Yi=Fi(Xi), where Xi, Yi are
vectors of input and output variables of the i-th model. Then

for determined �̃� and �̃�′ all variables V are defined if the
following system of multivalued logical equations has a
solution [25]:

vik=fik(vi1,…,𝑣𝑖𝐋𝑖
), i=1,…,N; k=1,…,Ki; (1)

vj=F𝑢𝑗
(vj1,…,𝑣𝑗T𝑗

), j=1,…,J,

where N is the number of models mi;
Ki is the number of output variables of the model mi;
J is the number of nodes in the set U;
Tj is the number of output variables of the models mapped to
the uj node;
fik is a multivalued logical function that defines the
dependence of the output variable vik on the input variables of
the model mi;
F𝑢𝑗

 is the union function at the uj node.

The algorithm for digital systems simulation using the
introduced models consists of the following steps.

1. Assigning initial values to the Ri variables.
2. Determination of the values of the input.
3. Checking conditions 3 and 4. If conditions are not

satisfied it means that models mi union is not correct. Stop
simulation. If there is no errors go to the next step.

2021 International Seminar on Electron Devices Design and Production (SED)

4. Solving equations (1). If there is no solution that
means models mi union is not correct. Stop simulation. If
there is a solution go to the next step.

5. Values of output variables P’’ calculation.
6. Determination of new values of Ri.
7. If simulation is not finished go to step 2, otherwise

stop simulation.

IV. CONCLUSION

The proposed structure and mathematical model are the
basics for building can a domestic system for joint simulation
of hardware and software at the design stage for debugging
and comparative analysis of options. We hope that in the next
paper we will be able to discuss experience of developed
system applications.

REFERENCES

[1] J. Shi, W. Liu, M. Jiang, “Software Hardware Co-Simulation and Co-
Verification in Safety Critical System Design”, 2013 IEEE
International Conference on Intelligent Rail Transportation (ICIRT),
pp. 71–74. DOI: 10.1109/ICIRT.2013.6696270

[2] Y. Gao, L. Liu, H. Du and Q. Gong, "Software and Hardware Co-
Verification Technology Based on Virtual Prototyping of RF
Soc", 2018 IEEE International Conference on Computer and
Communication Engineering Technology (CCET), Beijing, 2018, pp.
244-247. DOI: 10.1109/CCET.2018.8542186

[3] M.D. Nguyen, «Hardware/software formal co-verification using
hardware verification techniques”, Fourth Int. Conf. on
Communications and Electronics (ICCE), 2012, pp. 465-470.
DOI: 10.1109/CCE.2012.6315951

[4] A.D. Ivannikov, A.L. Stempkovskiy, “Formal mathematical
representation for the task of digital system projects debugging”,
Informacionnie Technologii, 2014, no. 9, pp. 3—10 (in Russian).

[5] A. Matsuda, T. Ishihara, “Developing an integrated verification and
debug methodology”, Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2011, pp. 1–21.
DOI: 10.1109/DATE.2011.5763087

[6] Y. Lin, A. Su, “Functional Verifications for SoC
Software/Hardware Co-Design: From Virtual Platform to Physical
Platform,” 2011 IEEE International SoC Conference (SOCC),
рр. 201–206. DOI: 10.1109/SOCC.2011.6085104

[7] Y. Choi and J. Cong, "HLScope: High-Level Performance Debugging
for FPGA Designs", 2017 IEEE 25th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), Napa,
CA, 2017, pp. 125-128. DOI: 10.1109/FCCM.2017.44

[8] A.L.Stempkovsky, A.D.Ivannikov, “Formal Description of Digital
Control System Operation and Its Use in Designing, Russian
Microelectronics, 2019, vol. 48, no.5, pp. 318-325.
DOI: 10.1134/S1063739719050093

[9] R. Willenberg and P. Chow, "SimXMD: Simulation-based HW/SW co-
debugging", 2013 23rd International Conference on Field
programmable Logic and Applications, Porto, 2013, pp. 1-1.
DOI: 10.1109/FPL.2013.6645632

[10] T. Chang, S. Hou and I. Huang, "A unified GDB-based source-
transaction level SW/HW co-debugging", 2016 IEEE Asia Pacific
Conference on Circuits and Systems (APCCAS), Jeju, 2016, pp. 506-
509. DOI: 10.1109/APCCAS.2016.7804015

[11] A. Jasnetski, S.A. Oyeniran, A. Tsertoy, “High-Level Modeling and
Testing of Multiple Control Faults in Digital Systems”, IEEE 19th
International Symposium on Design and Diagnostics of Electronic
Circuits & Systems (DDECS), 2016, paper # 7482445.
DOI: 10.1109/DDECS.2016.7482445

[12] S. Jain, P. Govani, K.B. Poddar, A.K. Lal, R.M. Parmar, “Functional
Verification of DSP Based On-Boad VLSI Design”, International

Conference on VLSI Systems, Architectures, Technology and
Applications (VLSI-SATA), 2016, pp. 1–4. DOI: 10.1109/VLSI-
SATA.2016.7593030

[13] A.M. Cruz, R.B. Fernandez, H.M. Lozano, M.A. Ramirez Salinas, L.A.
Vila Vargas, “Automated Functional Test Generation for Digital
Systems Through a Compact Binary Differential Evolution
Algorithm”, Journal of Electronic Testing-Theory and Applications,
2015, vol. 31, no. 4, pp. 361–380. DOI: 10.1007/s10836-015-5540-6

[14] S.V. Gavrilov, A.D. Ivannikov, A.L. Stempkovsky “Method of
mathematical description for digital system blocks logical models”,
Problems of Perspective Micro- and Nanoelectronic Systems
Development, 2019, no. 2. pp. 8-11. DOI: 10.31114/2078-7707-2019-
2-8-11

[15] A. Ivannikov, B. Pozdneev, I. Romanova and S. Tumkovskiy,
"Debugging test set generation for digital control system
functions", 2018 Moscow Workshop on Electronic and Networking
Technologies (MWENT), Moscow, 2018, pp. 1-5.
DOI: 10.1109/MWENT.2018.8337238

[16] Y. Tai, W. Hu, Lantian Guo, B. Mao and D. Mu, "Gate Level
Information Flow analysis for multi-valued logic system", 2017 2nd
International Conference on Image, Vision and Computing (ICIVC),
Chengdu, 2017, pp. 1102-1106. DOI: 10.1109/ICIVC.2017.7984724

[17] S.V. Gavrilov, O.N. Gudkova, A.L. Stempkovskiy, “The Analysis of
the Performance of Nanometer Intellectual Property Blocks Based on
Interval Simulation”, Russian Microelectronics, vol. 42, no. 7, 2013,
pp. 396–402. DOI: 10.1134/S1063739713070068

[18] P.M.Maurer, “Time-parallel multi-dalay logic simulation”, 2016
Symposium on Theory of Modeling and Simulation (TMS-DEVS),
Pasadena, CA, 2016, pp.1-7. DOI: 10.23919/TMS.2016.7918823

[19] G. Ivanova, A. Korshunov, T. Zhukova, I. Tiunov “Development of
mathematical models for standart cell timing analysis at the 28 nm
technology and below”, Proc. 2017 IEEE Russia Section Young
Researchers in Electrical and Electronic Engineering Conf., ElConRus
2017, 2017, pp.1401-1405. DOI: 10.1109/EIConRus.2017.7910832

[20] D.A. Zheleznikov,M.A. Zapletina, V.M. Khvatov. “The rip-up and
reroute technique research for physical synthesis in the basis of
reconfigurable socs”, Problems of Perspective Micro- and
Nanoelectronic Systems Development, 2018, no. 1, pp. 188-192 (in
Russian). DOI: 10.31114/2078-7707-2018-1-188-192

[21] I. Považan, M. Krnjetin and N. Četić. “Communication interface
libraries as an extension to the debugging framework for DSP
applications”, 2015 23rd Telecommunications Forum Telfor
(TELFOR), Belgrade, 2015, pp. 1005-1008.
DOI: 10.1109/TELFOR.2015.7377635

[22] J. Chatterjee, A. Saxena, A. Mehra, G. Vyas and V. Mukesh,
"Verification and Debugging of LC-3 Test Bench Environment using
System Verilog", 2018 Second International Conference on
Electronics, Communication and Aerospace Technology (ICECA),
Coimbatore, 2018, pp. 1253-1258.
DOI: 10.1109/ICECA.2018.8474724

[23] S. Kunapareddy, S. D. Turaga and S. S. T. M. Sajjan, "Comparision
between LPSAT and SMT for RTL verification", 2015 International
Conference on Circuits, Power and Computing Technologies
[ICCPCT-2015], Nagercoil, 2015, pp. 1-5.
DOI: 10.1109/ICCPCT.2015.7159418

[24] A.D. Ivannikov, A.L. Stempkovskiy, “Basic principles of digital
system design simulation for hardware/software debugging”,
Information Systems and Technologies, 2018, no. 6 (110), pp.13-19 (in
Russian

[25] A. Ivannikov, "Iterative Methods for Multi-Valued Logical Equation
System Solving while Digital System Simulating," 2020 IEEE East-
West Design & Test Symposium (EWDTS), Varna, Bulgaria, 2020, pp.
1-6. DOI: 10.1109/EWDTS50664.2020.9224976

http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=2&SID=R288kWSL2eejopkHfg9&page=1&doc=3
http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=2&SID=R288kWSL2eejopkHfg9&page=1&doc=3
https://doi.org/10.1109/ICIRT.2013.6696270
https://doi.org/10.1109/CCET.2018.8542186
https://doi.org/10.1109/DATE.2011.5763087
http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=2&SID=R288kWSL2eejopkHfg9&page=1&doc=7
http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=2&SID=R288kWSL2eejopkHfg9&page=1&doc=7
http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=2&SID=R288kWSL2eejopkHfg9&page=1&doc=7
https://doi.org/10.1109/SOCC.2011.6085104
https://doi.org/10.1109/FCCM.2017.44
https://doi.org/10.1134/S1063739719050093
https://doi.org/10.1109/FPL.2013.6645632
https://doi.org/10.1109/APCCAS.2016.7804015
https://doi.org/10.1109/DDECS.2016.7482445
https://doi.org/10.1109/VLSI-SATA.2016.7593030
https://doi.org/10.1109/VLSI-SATA.2016.7593030
https://doi.org/10.31114/2078-7707-2019-2-8-11
https://doi.org/10.31114/2078-7707-2019-2-8-11
https://doi.org/10.1109/MWENT.2018.8337238
https://doi.org/10.1109/ICIVC.2017.7984724
https://doi.org/10.1134/S1063739713070068
https://doi.org/10.23919/TMS.2016.7918823
https://doi.org/10.1109/EIConRus.2017.7910832
https://doi.org/10.31114/2078-7707-2018-1-188-192
https://doi.org/10.1109/TELFOR.2015.7377635
https://doi.org/10.1109/ICECA.2018.8474724
https://doi.org/10.1109/ICCPCT.2015.7159418
https://doi.org/10.1109/EWDTS50664.2020.9224976

