
2021 International Seminar on Electron Devices Design and Production (SED)

978-1-6654-3941-1 @2021 IEEE

Computing Nonlinear Polynomial Functions on

FPGA-Class PLD Arrays

Sergei Shalagin

Dept. of Computer Systems

Kazan National Research Technical

University – KAI (KNRTU-KAI)

Kazan, Russian Federation

0000-0002-2591-2749

Abstract— This paper estimates the quantities of the

resources of FPGA-class PLD generators of Boolean functions,

D-triggers, and input/output units that are required for the

distributed computing of nonlinear polynomial functions over a

Galois field of a certain power in a preset number of variables.

Computations were performed considering the usage factor of

the relevant PLD/FPGA resources, as well as the number of the

variables for the above functions. We also calculated the

PLD/FPGA array size required for computing the predefined

polynomial function over a Galois field on both existing and

potential distributed computing systems.

Keywords—polynomial function, FPGA-based PLD

architecture, distributed computing systems.

I. INTRODUCTION

In implementing a broad class of systems intended for the
real-time processing of digital information, distributed
computations can be used, i.e., performing the same parallel
and/or pipelined operations on a flow of data implementable
in multiprocessing systems (MPSs) [1]. MPS computational
nodes are both general-purpose and special-purpose
microprocessors (MPs) implemented on VLSIs, particularly
on the FPGA-class programmable logic devices [2].
Programmable-architecture MPSs that include elements, such
as FPGA-class PLDs [3, 4], can be used as aircraft systems
and/or embedded systems that implement various high-
reliability devices at different times. In this case, hardware IP
cores inside the PLD/FPGA can act as MPs, such as
generators of Boolean functions of a given number of
variables within configurable logic blocks [2, 5, 6]. Many
various-purpose computing devices can be implemented
based on the above IP cores [7-13].

This paper defines the estimates of how many resources of
a certain FPGA-class PLD are required for a distributed
computation of a nonlinear polynomial function over a Galois
field of a certain power and of a preset number of variables.

II. PROBLEM STATEMENT

Problem of implementing a broad class of digital signal
generating/processing devices on a programmable-
architecture MPS reduces to the problem of synthesizing
similar computing devices implementing a nonlinear
polynomial function of m variables over a Galois field

represented as (2)kGF (NPF(m)) [14]. [15] shows that

NPF(m) defined over
2(2)GF can be synthesized on a

Virtex-4 PLD based on similar IP cores having a high degree
of conformity with this family’s PLD architecture. The high
conformity degree is achieved due to the configurability of the
generators of general Boolean functions of four variables,

GBF(4), within the PLD/Virtex-4. Two GBFs(4) allow
implementing either the operation of multiplying two
elements or the modulo 2 bitwise operation of summing four

elements
2(2)GF . In general case, similar IP cores, software

or schematic-based ones, that implement operations over

(2)kGF have a high degree of conformity with the

architecture of an MPS that includes similar elements, i.e.,
hardware IP cores, due to implementing a general Boolean
function of 2∙k variables, GBF(2∙k). True is

Statement 1. k GBFs(2∙k) allow implementing the
operation of multiplying two elements or a bitwise operation

of modulo 2 summing of k elements of field (2)kGF .

In [15], estimates of temporary and hardware complexity
were obtained for the distributed computation within the

PLD/FPGA architecture of an NPF(m) defined over (2)kGF

and represented as:

 () 1

1

1

1 ... 1

0 0

,..., m

m

m

w w
i i

m i i m

i i

f x x a x x
= =

= ()

where 1

1... 1, , ..., (2)m

m

i i k
i i ma x x GF is an elementary

polynomial (EP), 0, 2 1k
ji = − , 1,j m= , 2 1kw = − ,

symbol ∑ denotes the bitwise operation of modulo 2

summing. Expressions 1

1... 1 ... m

m

i i
i i ma x x are defined in (1) as

elementary polynomials (EPs). Presence of factors
1... 0

mi ia =

allows non-computing the values of the relevant EPs.
PLDs/FPGAs include MPs that implement GBF(2∙k) and the
parallel registers for k bits – RG(k), k = 2, 3, … .

III. ESTIMATES OF NPF COMPUTING COMPLEXITY

Suppose the NPF(m) factors in (1),
1 ... mi ia , 0, 2 1k

ji = − ,

and 1,j m= , are constants. What is required is to find out, at

which value of m the function represented as (1) can be
implemented on a PLD/FPGA of a given type, provided that

it includes GBF(2)kQ GBFs(2∙k), DQ D-triggers, and IOBQ

input-output blocks (IOBs), respectively. Solving this
problem reduces to computing for an NPF(m) represented as

(1), at a given m, the values of GBF(2)kN , DN , and IOBN , for

which constraints, such as GBF(2)kN , are true.

2021 International Seminar on Electron Devices Design and Production (SED)

GBF GBF GBF

D D D

IOB IOB IOB

N k Q

N k Q

N k Q

 ()

According to [15], the values of GBFk , Dk , and IOBk are

usually taken as equal to 0.5-0.7. Let us find the values of

GBFN , DN , and IOBN .

To calculate NPF(m) represented as (1), the following
operations should be executed over the elements of field

(2)kGF : 1) Raising the values of jx , 1,j m= , to powers

2, 1p w= − ; 2) multiplying two variables (or two variables

and a constant); and 3) summing k variables (or k variables
with a constant). To execute each of operations (1)-(3), k
GBFs(2∙k) are required.

According to [15], to calculate NPF(m) represented as (1),

required are (2)m w − operations represented as (1),

()(),

1

2 (1)
m

m d d d
m m d

d

w C Z−

=

 − − operations represented as

(2), where ,m dZ is the number of EPs of d variables, for which

1... 0
mi ia = , and (),

0

m
d
m m d

d

C Z
=

− operations represented as (3).

As a result,

(

()()

()

GBF(2)

,

1

,

1

(2)

2 (1)

.

k

m
m d d d

m m d

d

m
d
m m d

d

N k m w

w C Z

C Z

−

=

=

= − +

+ − − +

+ −

 ()

Number of IOBs to be involved to ensure computing the
value of NPF(m) represented as (1) is

 IOB (1)N k m= + ()

The lower estimate of the number of D-triggers required
for computing NPF(m) represented as (1) in the FPGA-class
PLD architecture is defined as:

 BGBFD ION N N + ()

In view of the above, true is the following

Statement 1. NPF(m) represented as (1), at the predefined

values of factors
1 ... mi ia , 0, 2 1k

ji = − , and 1,j m= , can be

implemented on a PLD/FPGA, for which GBFQ , DQ , and

IOBQ are defined, provided that constraints (2) are met in

computing parameters GBFN , DN , and IOBN according to

(3), (5) and (4), respectively.

On a given PLD/FPGA, suppose that condition (2) is met
for NPF(m) represented as (1), while it is not met for
NPF(m+1) represented as (1). Then computing NPF
represented as (1) of q variables, q m , requires involving a

programmable-architecture MPS that includes more than one
PLD/FPGA, the type of which was predefined initially. Let us
re-write expression (1) as:

()

() 1

1

1

1

... 1 1

0 0

,...,

... ,..., ... qm

m q

m q

q

w w
ii

i i m m q

i i

f x x

f x x x x+

+

+

+

= =

=

=
 ()

2 1kw = − . If ()
1... 1,...,m qi i mf x x

+
 is a variable, then

parameters GBFN , DN , and IOBN in inequality (2) are

computed, considering this fact according to expressions:

() ()(

()()

()

GBF

,

0

,

0

2

2 (1)

,

q m
q m d d d

q m q m d

d

q m
d
q m q m d

d

N k q m w

w C Z

C Z

−
− −

− −

=

−

− −

=

= − − +

+ − − +

+ −

 ()

()

IOB (2 1)k q mN k m−= + + ()

In view of the above, true is

Statement 2. NPF(q) represented as (6), q m , with the

given values of factors
1... qi ia , 0, 2 1k

ji = − , and 1,j q= , can

be implemented on multiple PLDs/FPGAs with the power of

()2 1k q m− + , for which GBFQ , DQ , and IOBQ are defined,

provided that constraints (2) are fulfilled in computing

parameters GBFN , DN , and IOBN according to (7), (5), and

(8), respectively.

Statements 1 and 2 allow defining the maximum number
of the variables of NPF represented as (1) and as (6), which
can be calculated when using a PLD/FPGA of a given type
within the programmable-architecture MPS.

Note 1. Constant values presented in (6) instead of

()
1... 1,...,m qi i mf x x

+
 allow considerably reducing the spend of

the MPS MPs on computing the value of NPF(q).

The lower estimate of the total number of FPGA-class
PLDs required for implementing NPF(q) is defined as:

B

GBF

GBF

I

GB

(2)

(2)

D
FPGA

D D

IO

OB IO

F

B

max

k

k

N

k Q

N
Q

k Q

N

k Q

 ()

At the same time, symbols in the formula are similar to
those in (2). There is

Statement 3. The lower estimate of the number of the
FPGA-class programmable logic devices required to

2021 International Seminar on Electron Devices Design and Production (SED)

implement NPF(q) represented as (6) is defined according to
(9).

According to Statement 3 above, we can define the lower
estimate of the PLD/FPGA array size, which should be used
to implement NPF represented as (6) of a given number of

variables over field (2)kGF . Estimate (9) can be improved

by implementing on one FPGA array both an IP core
implementing NPF(m) and an IP core implementing k
multiplexer. This allows reducing the number of IOBs
required to transfer among FPGAs the intermediate results
obtained in computing the values of NPF represented as (1).

IV. DISTRIBUTED COMPUTATION OF NPF

Suppose a given PLD/FPGA, existing or potential,
includes MPs implementing an arbitrary GBF(a). Let us
consider the implementation of NPF(q) represented as (1) over

(2)kGF , provided that 1, ...,m qx x+ take the predefined

constant values of 0, w , while 1,..., mx x vary [9]. We have

 () ()
11 ... 1,..., ,...,

m qq i i mf x x x x
+

= ()

with the given 0, 2 1k
ji = − and 1,j m q= + . Let us

consider the implementation on the above PLD/FPGA of the

set ()
1... 1,...,m qi i mx x

+
 as similar IP cores. It is required to

compute ()2
q m

k Z
−

− values of ()
1... 1,...,m qi i mx x

+
, having

implemented the relevant number of IP cores and k

multiplexers ()2
q m

k
−

-in-1, where Z is the constants used in

(10) instead of ()
1... 1,...,m qi i mx x

+
, 0, 2 1k

ji = − , and

1,j m q= + , according to Note 1.

The language of Statement 1 can be strengthened at

implementing on a given PLD/FPGA a set of ()2
x

k IP cores

implementing ()
1... 1,...,m qi i mx x

+
 at predefined 0, 2 1k

ji = − ,

1,j m q= + , as well as k multiplexers ()2
x

k -in-1. In total, the

above modules allow implementing NPF(m x+) over

(2)kGF . Let us introduce the following definitions:

Definition 1. An arbitrary ()
1... 1,...,m qi i mx x

+
 defined over

(2)kGF according to (10) can be implemented as pipeline as

an IP core when using k GBFs(a), one RG(k) (or k D-triggers):

m k a , to save the value at the output, as well as m RGs(k)

to save the input parameters.

Definition 2. Multiplexer 2b
-in-1 can be pipelined when

using a GBF(a): 2b b a+ , a D-trigger to save the values at

the output, and 2b b+ D-triggers to save input variables.

Definition 3. Multiplexer ()2
e

b -in-1, 1, 2, ...e = , can be

pipelined when using 2 1e − GBFs(a) and 2 1e − D-triggers

to save intermediate and final values, as well as 2be b e Z+ −

D-triggers to save input variables.

According to Definitions 1-3, implementing ()2
x

k Z−

()
1... 1,...,m qi i mx x

+
 with predefined 0, 2 1k

ji = − ,

1,j m q= + , as well as k multiplexers ()2
x

k -in-1, requires

()m x+ inputs and one output, k bits each; ()2
x

kk Z−

GBFs(a) to implement ()
1... 1,...,m qi i mx x

+
and ()2 1ek −

GBFs(a) to implement k multiplexers ()2
x

k -in-1, provided

that e k x b= ; to save intermediate and final results in

computing ()
1... 1,...,m qi i mx x

+
 and multiplexing ()2

e
b -in-1,

()2
x

kk Z− and ()2 1ek − D-triggers, e k x b= are

required, respectively; and to save the values at inputs, only

()m x+ RGs(k) (or ()k m x + D-triggers) are required, the

values at the input of multiplexers are saved at the output of
the preceding elements. This allows considerably save the
number of D-triggers used for distributed computation of

NPF(m x+) over (2)kGF . In view of the above, there is

Statement 4. For distributed computation of NPF(m x+)

over (2)kGF on a given FPGA implementing GBF(a),

() ()GBF 2 2 1
x

k eN k k Z= + − − , e k x b= ,

()FD GBN N k m x= + + , and ()IOB 1N k m x= + + are

required.

Example 1. For a Virtex-7 FPGA, XC7V585T,

GBF 585,720Q = , D 728,400Q = , IOB 850Q = , and

GBF D IOB 0.5k k k= = = , GBF implements an arbitrary

Boolean function of six variables: 6a = , 0Z = . It is required

to determine the number of variables for NPF(m x+) over
2(2)GF , implemented on the given FPGA according to

Statement 4, condition (9) being met.

In Statements 1-3, 2k = , 3m = , and 2b = in the given

conditions. Therefore, to implement NPF(m x+) over
2(2)GF , ()GBF 2 4 2 1x eN = + − , e x= ,

()FD GB 2 3N N x= + + , and ()IOB 2 4N x= + will be

required. Condition (9) will be met for the maximum integer
8x = . In accordance with Statement 4, NPF(11) can be

implemented over
2(2)GF on the given FPGA.

Example 2. For a Virtex-7 FPGA, XC7V585T, all
conditions from Example 1 are met. It is required to determine

the number of variables for NPF(m x+) over
3(2)GF ,

implemented on the given FPGA according to Statement 4,
condition (9) being met.

In Statements 1-3, 3k = , 2m = , and 2b = in the given

conditions. Therefore, to implement NPF(m x+) over
3(2)GF , ()GBF 3 8 2 1x eN = + − , 3 2e x= ,

2021 International Seminar on Electron Devices Design and Production (SED)

()FD GB 3 2N N x= + + , and ()IOB 3 4N x= + will be

required. Condition (9) will be met for the maximum integer
5x = . In accordance with Statement 4, NPF(7) can be

implemented over
3(2)GF on the given FPGA.

Let us consider how k multiplexers -in-1 are

implemented on one PLD. According to definitions 2 and 3,
there is

Statement 5. For the distributed implementation of k

multiplexers ()2
y

k -in-1 on a given FPGA implementing

GBF(a), ()GBF 2 1eN k= − , e k y b= ,

FD GB 2kyN N k k y Z= + + − , and BIOB G FDN N N k= − +

are required.

Example 3. Let us consider the implementation of k

multiplexers ()2
y

k -in-1 on a Virtex-7 FPGA, XC7V585T,

for which all the conditions from Example 1 are met. It is
required to determine the number of variables x that serve for
multiplexing a certain number of the values of

()
1... 1,...,m xi i mx x

+
, computed over

2(2)GF according to (10)

at the given 0, 2 1k
ji = − , 1,j m x= + and at condition (9)

being met.

In Definitions 2 and 3, 2k = and 2b = at the given

conditions; condition (9) will be met at the maximum integer

7y = . According to Statement 5, 2 multiplexers ()
7

22 -in-1

can be implemented on the given FPGA. This allows

implementing NPF(18) over
2(2)GF according to (10) when

using eight FPGAs XC7V585T, of which one is used for the
multiplexer, while 7 ones are for implementing NPF(11) over

2(2)GF (see Example 1).

Example 4. Let us consider the implementation of k

multiplexers ()2
y

k -in-1 on Virtex-7 FPGA, XC7V585T, for

which all the conditions from Example 1 are met. It is required
to determine the number of variables x that serve for
multiplexing a certain amount of the values of

()
1... 1,...,m xi i mx x

+
, computed over

3(2)GF according to (10)

at the given 0, 2 1k
ji = − , 1,j m x= + an at condition (9)

being met (9).

In Definitions 2 and 3, 3k = и 2b = at the given

conditions; condition (9) will be met at the maximum integer

3y = . According to Statement 5, 3 multiplexers ()
3

32 -in-1

can be implemented on the given FPGA. This allows

implementing NPF(10) over
3(2)GF according to (10) when

using four FPGAs XC7V585T, of which one is used for the
multiplexer, while three ones are for implementing NPF(7)

over
3(2)GF (see Example 1).

Note 2. In Examples 1-4 above, IOBs were the limiting
factor in implementing NPFs and multiplexers on FPGA
XC7V585T.

Considering that modern Russian MPSs include up to 1.5
thousand PLDs/FPGAs, this amount is quite acceptable for

implementing on them up to 187 NPFs(18) over
2(2)GF and

up to 375 NPFs(10) over
3(2)GF .

Number of NPF variables can be increased by

multiplexing many values of ()
1... 1,...,m qi i mx x

+
 at predefined

0, 2 1k
ji = − , 1,j m q= + , when using more than one

FPGA. Based on Statements 4 and 6, we determined

Statement 6. For the distributed computation of NPF(q)

shown in (1) and represented as (10), it is required 2 1u −

FPGAs implementing GBF(a), ()u q m x y= − − .

V. CONCLUTION

We obtained the estimates of the complexity of
implementing the nonlinear polynomial functions of a preset
number of variables on a programmable-architecture MPS.
The estimates depend on both the PLD characteristics, i.e., the
number of elements – generators of Boolean functions of a
given number of variables, D-triggers, and input-output
blocks, and the characteristics of the nonlinear polynomial
functions to be implemented, i.e., numbers of variables and
nonzero coefficients. The above estimates are defined for both
the number of PLD elements and the number of PLD crystals
included in the MPS, both existing and potential ones.

REFERENCES

[1] V. V. Voevodin, Parallelnyye vychisleniya [Parallel Computing],
BKhV-Peterburg, Saint Petersburg, 2002, 600 p. (in Russian).
[Online]. Available: https://booksee.org/book/589570.

[2] M.O. Kuzelin, D.A. Knyshev, and V. Yu. Zotov, Sovremennye
semeistva PLIS firmy Xilinx: spravochoye posobiye [Modern FPGA
Families from Xilinx: a Reference Book], Goriachaia liniya-Telekom
Publ., Moscow, 2004, 440 p. (in Russian).

[3] I. A. Kalyaev, I. I. Levin, A. I. Dordopulo and L. M. Slasten, “FPGA-
based reconfigurable computer systems,” 2013 Science and
Information Conference, London, UK, 2013, pp. 148-155. [Online].
Available: https://ieeexplore.ieee.org/document/6661730.

[4] A. I. Dordopulo, E. A. Semernikov, I. A. Kalyaev, and I. I. Levin,
“High-Performance Reconfigurable Computer Systems of New
Generation,” Numerical methods and programming, vol. 12, pp. 82-89,
Oct.–Dec. 2011. (in Russian). [Online]. Available: https://en.num-
meth.ru/index.php/journal/article/view/489.

[5] FPGA Leadership across Multiple Process Nodes/ Xilinx Inc. Cop.
2021. URL: https://www.xilinx.com/products/silicon-devices/fpga.html.

[6] 7-Series Produkt Selection Guade/ Xilinx Inc. Cop. 2014-2020. URL:
https://www.xilinx.com/support/documentation/selection-guides/7-
series-product-selection-guide.pdf.

[7] V. A. Raikhlin, I. S. Vershinin, R. F. Gibadullin, and S. V. Pystogov,
“Reliable recognition of masked binary matrices. Connection to
information security in map systems,” Lobachevskii J Math., vol. 34,
pp. 319–325, Dec. 2013. [Online]. Available:
https://doi.org/10.1134/S1995080213040112.

[8] I. S. Vershinin, R. F. Gibadullin, S. V. Pystogov, and V. A. Raikhlin,
“Associative Steganography. Durability of Associative Protection of
Information,” Lobachevskii J Math., vol. 41, pp. 440–450, July 2020.
[Online]. Available: https://doi.org/10.1134/S1995080220030191.

[9] V. M. Zakharov, and S. V. Shalagin, Raspredelennoye vychisleniye
nelineynykh mnogochlenov nad polem Galua v arkhitekture FPGA
[Distributed Computation of Non-Linear Polynomials over the Galois
Field in the FPGA Architecture]. Herald of Technological University,
vol. 21, no. 11, pp. 146-149, Nov. 2018. (in Russian). [Online].
Available: https://www.elibrary.ru/item.asp?id=36815900.

[10] S. Yu. Melnikov, and K. E. Samouylov, “Probabilistic functions and
statistical equivalence of binary shift registers with random Markov

()2
x

k

2021 International Seminar on Electron Devices Design and Production (SED)

input,” CEUR Workshop Proceedings, vol. 2639, pp. 93-99. July 2020.
[Online]. Available: http://ceur-ws.org/Vol-2639/paper-08.pdf.

[11] Z. Gizatullin, R. Gizatullin and V. Drozdikov, “Research of Noise
Immunity of Computer Equipment of Control Systems Under Action
of Pulsed Magnetic Field,” 2019 International Russian Automation
Conference (RusAutoCon), Sochi, Russia, 2019, pp. 1-5, doi:
10.1109/RUSAUTOCON.2019.8867658. [Online]. Available:
https://ieeexplore.ieee.org/document/8867658.

[12] R. F. Gibadullin, G. A. Baimukhametova and M. Y. Perukhin,
“Service-Oriented Distributed Energy Data Management Using Big
Data Technologies,” 2019 International Conference on Industrial
Engineering, Applications and Manufacturing (ICIEAM), Sochi,
Russia, 2019, pp. 1-7, doi: 10.1109/ICIEAM.2019.8743064. [Online].
Available: https://ieeexplore.ieee.org/document/8743064.

[13] V. Pesoshin, A. Gumirov, V. Kuznetsov and D. Shirshova, "Generators
of the Binary Inverse-Segment Pseudo-Random Sequences," 2018
IEEE East-West Design & Test Symposium (EWDTS), Kazan, 2018,

pp. 1-8, doi: 10.1109/EWDTS.2018.8524819. [Online]. Available:
https://ieeexplore.ieee.org/document/8524819.

[14] V. M. Zakharov and S. V. Shalagin, “Executing discrete orthogonal
transformations based on computations on the Galois field in the FPGA
architecture,” 2016 International Siberian Conference on Control and
Communications (SIBCON), Moscow, Russia, 2016, pp. 1-4, doi:
10.1109/SIBCON.2016.7491652. [Online]. Available: https:
//ieeexplore.ieee.org/document/7491652

[15] S. V. Shalagin, Realizaciya cifrovyh ustrojstv v arhitekture
PLIS/FPGA pri ispol'zovanii raspredelennyh vychislenij v polyah
Galua [Implementing digital devices in FPGA architecture when using
distributed computing in Galois fields], KNRTU-KAI Press, Kazan,
2016. 228 p. (in Russian). [Online]. Available:
https://www.elibrary.ru/item.asp?id=27287609.

