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Abstract— This paper estimates the quantities of the 

resources of FPGA-class PLD generators of Boolean functions, 

D-triggers, and input/output units that are required for the 

distributed computing of nonlinear polynomial functions over a 

Galois field of a certain power in a preset number of variables. 

Computations were performed considering the usage factor of 

the relevant PLD/FPGA resources, as well as the number of the 

variables for the above functions. We also calculated the 

PLD/FPGA array size required for computing the predefined 

polynomial function over a Galois field on both existing and 

potential distributed computing systems. 
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I. INTRODUCTION 

In implementing a broad class of systems intended for the 
real-time processing of digital information, distributed 
computations can be used, i.e., performing the same parallel 
and/or pipelined operations on a flow of data implementable 
in multiprocessing systems (MPSs) [1]. MPS computational 
nodes are both general-purpose and special-purpose 
microprocessors (MPs) implemented on VLSIs, particularly 
on the FPGA-class programmable logic devices [2]. 
Programmable-architecture MPSs that include elements, such 
as FPGA-class PLDs [3, 4], can be used as aircraft systems 
and/or embedded systems that implement various high-
reliability devices at different times. In this case, hardware IP 
cores inside the PLD/FPGA can act as MPs, such as 
generators of Boolean functions of a given number of 
variables within configurable logic blocks [2, 5, 6]. Many 
various-purpose computing devices can be implemented 
based on the above IP cores [7-13]. 

This paper defines the estimates of how many resources of 
a certain FPGA-class PLD are required for a distributed 
computation of a nonlinear polynomial function over a Galois 
field of a certain power and of a preset number of variables. 

II. PROBLEM STATEMENT 

Problem of implementing a broad class of digital signal 
generating/processing devices on a programmable-
architecture MPS reduces to the problem of synthesizing 
similar computing devices implementing a nonlinear 
polynomial function of m variables over a Galois field 

represented as (2 )kGF  (NPF(m)) [14]. [15] shows that 

NPF(m) defined over 
2(2 )GF  can be synthesized on a 

Virtex-4 PLD based on similar IP cores having a high degree 
of conformity with this family’s PLD architecture. The high 
conformity degree is achieved due to the configurability of the 
generators of general Boolean functions of four variables, 

GBF(4), within the PLD/Virtex-4. Two GBFs(4) allow 
implementing either the operation of multiplying two 
elements or the modulo 2 bitwise operation of summing four 

elements 
2(2 )GF . In general case, similar IP cores, software 

or schematic-based ones, that implement operations over 

(2 )kGF  have a high degree of conformity with the 

architecture of an MPS that includes similar elements, i.e., 
hardware IP cores, due to implementing a general Boolean 
function of 2∙k variables, GBF(2∙k). True is 

Statement 1. k GBFs(2∙k) allow implementing the 
operation of multiplying two elements or a bitwise operation 

of modulo 2 summing of k elements of field (2 )kGF . 

In [15], estimates of temporary and hardware complexity 
were obtained for the distributed computation within the 

PLD/FPGA architecture of an NPF(m) defined over (2 )kGF  

and represented as: 
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symbol ∑ denotes the bitwise operation of modulo 2 

summing. Expressions 1

1... 1 ... m

m

i i
i i ma x x  are defined in (1) as 

elementary polynomials (EPs). Presence of factors 
1... 0

mi ia =  

allows non-computing the values of the relevant EPs. 
PLDs/FPGAs include MPs that implement GBF(2∙k) and the 
parallel registers for k bits – RG(k), k = 2, 3, … . 

III. ESTIMATES OF NPF COMPUTING COMPLEXITY 

Suppose the NPF(m) factors in (1), 
1 ... mi ia , 0, 2 1k

ji = − , 

and 1,j m= , are constants. What is required is to find out, at 

which value of m the function represented as (1) can be 
implemented on a PLD/FPGA of a given type, provided that 

it includes GBF(2 )kQ  GBFs(2∙k), DQ  D-triggers, and IOBQ  

input-output blocks (IOBs), respectively. Solving this 
problem reduces to computing for an NPF(m) represented as 

(1), at a given m, the values of GBF(2 )kN , DN , and IOBN , for 

which constraints, such as GBF(2 )kN , are true. 
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According to [15], the values of GBFk , Dk , and IOBk  are 

usually taken as equal to 0.5-0.7. Let us find the values of 

GBFN , DN , and IOBN . 

To calculate NPF(m) represented as (1), the following 
operations should be executed over the elements of field 

(2 )kGF : 1) Raising the values of jx , 1,j m= , to powers 

2, 1p w= − ; 2) multiplying two variables (or two variables 

and a constant); and 3) summing k variables (or k variables 
with a constant). To execute each of operations (1)-(3), k 
GBFs(2∙k) are required. 

According to [15], to calculate NPF(m) represented as (1), 

required are ( 2)m w −  operations represented as (1), 

( )( ),
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Number of IOBs to be involved to ensure computing the 
value of NPF(m) represented as (1) is 

 IOB ( 1)N k m=  +  () 

The lower estimate of the number of D-triggers required 
for computing NPF(m) represented as (1) in the FPGA-class 
PLD architecture is defined as: 

 BGBFD ION N N +  () 

In view of the above, true is the following 

Statement 1. NPF(m) represented as (1), at the predefined 

values of factors 
1 ... mi ia , 0, 2 1k

ji = − , and 1,j m= , can be 

implemented on a PLD/FPGA, for which GBFQ , DQ , and 

IOBQ  are defined, provided that constraints (2) are met in 

computing parameters GBFN , DN , and IOBN  according to 

(3), (5) and (4), respectively. 

On a given PLD/FPGA, suppose that condition (2) is met 
for NPF(m) represented as (1), while it is not met for 
NPF(m+1) represented as (1). Then computing NPF 
represented as (1) of q variables, q m , requires involving a 

programmable-architecture MPS that includes more than one 
PLD/FPGA, the type of which was predefined initially. Let us 
re-write expression (1) as: 
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2 1kw = − . If ( )
1... 1,...,m qi i mf x x

+
 is a variable, then 

parameters GBFN , DN , and IOBN  in inequality (2) are 

computed, considering this fact according to expressions: 
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In view of the above, true is 

Statement 2. NPF(q) represented as (6), q m , with the 

given values of factors 
1... qi ia , 0, 2 1k

ji = − , and 1,j q= , can 

be implemented on multiple PLDs/FPGAs with the power of 

( )2 1k q m− + , for which GBFQ , DQ , and IOBQ  are defined, 

provided that constraints (2) are fulfilled in computing 

parameters GBFN , DN , and IOBN  according to (7), (5), and 

(8), respectively. 

Statements 1 and 2 allow defining the maximum number 
of the variables of NPF represented as (1) and as (6), which 
can be calculated when using a PLD/FPGA of a given type 
within the programmable-architecture MPS. 

Note 1. Constant values presented in (6) instead of 

( )
1... 1,...,m qi i mf x x

+
 allow considerably reducing the spend of 

the MPS MPs on computing the value of NPF(q). 

The lower estimate of the total number of FPGA-class 
PLDs required for implementing NPF(q) is defined as: 
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At the same time, symbols in the formula are similar to 
those in (2). There is 

Statement 3. The lower estimate of the number of the 
FPGA-class programmable logic devices required to 
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implement NPF(q) represented as (6) is defined according to 
(9). 

According to Statement 3 above, we can define the lower 
estimate of the PLD/FPGA array size, which should be used 
to implement NPF represented as (6) of a given number of 

variables over field (2 )kGF . Estimate (9) can be improved 

by implementing on one FPGA array both an IP core 
implementing NPF(m) and an IP core implementing k 
multiplexer. This allows reducing the number of IOBs 
required to transfer among FPGAs the intermediate results 
obtained in computing the values of NPF represented as (1). 

IV. DISTRIBUTED COMPUTATION OF NPF 

Suppose a given PLD/FPGA, existing or potential, 
includes MPs implementing an arbitrary GBF(a). Let us 
consider the implementation of NPF(q) represented as (1) over 

(2 )kGF , provided that 1, ...,m qx x+  take the predefined 

constant values of 0, w , while 1,..., mx x  vary [9]. We have 

 ( ) ( )
11 ... 1,..., ,...,

m qq i i mf x x x x
+

=  () 

with the given 0, 2 1k
ji = −  and 1,j m q= + . Let us 

consider the implementation on the above PLD/FPGA of the 

set ( )
1... 1,...,m qi i mx x

+
 as similar IP cores. It is required to 

compute ( )2
q m

k Z
−

−  values of ( )
1... 1,...,m qi i mx x

+
, having 

implemented the relevant number of IP cores and k 

multiplexers ( )2
q m

k
−

-in-1, where Z is the constants used in 

(10) instead of ( )
1... 1,...,m qi i mx x

+
, 0, 2 1k

ji = − , and 

1,j m q= + , according to Note 1. 

The language of Statement 1 can be strengthened at 

implementing on a given PLD/FPGA a set of ( )2
x

k  IP cores 

implementing ( )
1... 1,...,m qi i mx x

+
 at predefined 0, 2 1k

ji = − , 

1,j m q= + , as well as k multiplexers ( )2
x

k -in-1. In total, the 

above modules allow implementing NPF( m x+ ) over 

(2 )kGF . Let us introduce the following definitions: 

Definition 1. An arbitrary ( )
1... 1,...,m qi i mx x

+
 defined over 

(2 )kGF  according to (10) can be implemented as pipeline as 

an IP core when using k GBFs(a), one RG(k) (or k D-triggers): 

m k a  , to save the value at the output, as well as m RGs(k) 

to save the input parameters. 

Definition 2. Multiplexer 2b
-in-1 can be pipelined when 

using a GBF(a): 2b b a+  , a D-trigger to save the values at 

the output, and 2b b+  D-triggers to save input variables. 

Definition 3. Multiplexer ( )2
e

b -in-1, 1, 2, ...e = , can be 

pipelined when using 2 1e −  GBFs(a) and 2 1e −  D-triggers 

to save intermediate and final values, as well as 2be b e Z+  −  

D-triggers to save input variables. 

According to Definitions 1-3, implementing ( )2
x

k Z−  

( )
1... 1,...,m qi i mx x

+
 with predefined 0, 2 1k

ji = − , 

1,j m q= +  , as well as k multiplexers ( )2
x

k -in-1, requires 

( )m x+  inputs and one output, k bits each; ( )2
x

kk Z−  

GBFs(a) to implement ( )
1... 1,...,m qi i mx x

+
and ( )2 1ek −  

GBFs(a) to implement k multiplexers ( )2
x

k -in-1, provided 

that  e k x b=  ; to save intermediate and final results in 

computing ( )
1... 1,...,m qi i mx x

+
 and multiplexing ( )2

e
b -in-1, 

( )2
x

kk Z−  and ( )2 1ek −  D-triggers,  e k x b=   are 

required, respectively; and to save the values at inputs, only 

( )m x+  RGs(k) (or ( )k m x +  D-triggers) are required, the 

values at the input of multiplexers are saved at the output of 
the preceding elements. This allows considerably save the 
number of D-triggers used for distributed computation of 

NPF( m x+ ) over (2 )kGF . In view of the above, there is 

Statement 4. For distributed computation of NPF( m x+ ) 

over (2 )kGF  on a given FPGA implementing GBF(a), 

( ) ( )GBF 2 2 1
x

k eN k k Z= + − − ,  e k x b=  , 

( )FD GBN N k m x= +  + , and ( )IOB 1N k m x=  + +  are 

required. 

Example 1. For a Virtex-7 FPGA, XC7V585T, 

GBF 585,720Q = , D 728,400Q = , IOB 850Q = , and 

GBF D IOB 0.5k k k= = = , GBF implements an arbitrary 

Boolean function of six variables: 6a = , 0Z = . It is required 

to determine the number of variables for NPF( m x+ ) over 
2(2 )GF , implemented on the given FPGA according to 

Statement 4, condition (9) being met. 

In Statements 1-3, 2k = , 3m = , and 2b =  in the given 

conditions. Therefore, to implement NPF( m x+ ) over 
2(2 )GF , ( )GBF 2 4 2 1x eN = + − , e x= , 

( )FD GB 2 3N N x= + + , and ( )IOB 2 4N x= +  will be 

required. Condition (9) will be met for the maximum integer 
8x = . In accordance with Statement 4, NPF(11) can be 

implemented over 
2(2 )GF  on the given FPGA. 

Example 2. For a Virtex-7 FPGA, XC7V585T, all 
conditions from Example 1 are met. It is required to determine 

the number of variables for NPF( m x+ ) over 
3(2 )GF , 

implemented on the given FPGA according to Statement 4, 
condition (9) being met. 

In Statements 1-3, 3k = , 2m = , and 2b =  in the given 

conditions. Therefore, to implement NPF( m x+ ) over 
3(2 )GF , ( )GBF 3 8 2 1x eN = + − ,  3 2e x=  , 
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( )FD GB 3 2N N x= + + , and ( )IOB 3 4N x= +  will be 

required. Condition (9) will be met for the maximum integer 
5x = . In accordance with Statement 4, NPF(7) can be 

implemented over 
3(2 )GF  on the given FPGA. 

Let us consider how k multiplexers -in-1 are 

implemented on one PLD. According to definitions 2 and 3, 
there is 

Statement 5. For the distributed implementation of k 

multiplexers ( )2
y

k -in-1 on a given FPGA implementing 

GBF(a), ( )GBF 2 1eN k= − ,  e k y b=  , 

FD GB 2kyN N k k y Z= +  +  −  , and BIOB G FDN N N k= − +  

are required. 

Example 3. Let us consider the implementation of k 

multiplexers ( )2
y

k -in-1 on a Virtex-7 FPGA, XC7V585T, 

for which all the conditions from Example 1 are met. It is 
required to determine the number of variables x that serve for 
multiplexing a certain number of the values of 

( )
1... 1,...,m xi i mx x

+
, computed over 

2(2 )GF  according to (10) 

at the given 0, 2 1k
ji = − , 1,j m x= +  and at condition (9) 

being met. 

In Definitions 2 and 3, 2k =  and 2b =  at the given 

conditions; condition (9) will be met at the maximum integer 

7y = . According to Statement 5, 2 multiplexers ( )
7

22 -in-1 

can be implemented on the given FPGA. This allows 

implementing NPF(18) over 
2(2 )GF  according to (10) when 

using eight FPGAs XC7V585T, of which one is used for the 
multiplexer, while 7 ones are for implementing NPF(11) over 

2(2 )GF  (see Example 1). 

Example 4. Let us consider the implementation of k 

multiplexers ( )2
y

k -in-1 on Virtex-7 FPGA, XC7V585T, for 

which all the conditions from Example 1 are met. It is required 
to determine the number of variables x that serve for 
multiplexing a certain amount of the values of 

( )
1... 1,...,m xi i mx x

+
, computed over 

3(2 )GF  according to (10) 

at the given 0, 2 1k
ji = − , 1,j m x= +  an at condition (9) 

being met (9). 

In Definitions 2 and 3, 3k =  и 2b =  at the given 

conditions; condition (9) will be met at the maximum integer 

3y = . According to Statement 5, 3 multiplexers ( )
3

32 -in-1 

can be implemented on the given FPGA. This allows 

implementing NPF(10) over 
3(2 )GF  according to (10) when 

using four FPGAs XC7V585T, of which one is used for the 
multiplexer, while three ones are for implementing NPF(7) 

over 
3(2 )GF  (see Example 1). 

Note 2. In Examples 1-4 above, IOBs were the limiting 
factor in implementing NPFs and multiplexers on FPGA 
XC7V585T. 

Considering that modern Russian MPSs include up to 1.5 
thousand PLDs/FPGAs, this amount is quite acceptable for 

implementing on them up to 187 NPFs(18) over 
2(2 )GF  and 

up to 375 NPFs(10) over 
3(2 )GF .  

Number of NPF variables can be increased by 

multiplexing many values of ( )
1... 1,...,m qi i mx x

+
 at predefined 

0, 2 1k
ji = − , 1,j m q= + , when using more than one 

FPGA. Based on Statements 4 and 6, we determined 

Statement 6. For the distributed computation of NPF(q) 

shown in (1) and represented as (10), it is required 2 1u −  

FPGAs implementing GBF(a), ( )u q m x y= − −   . 

V. CONCLUTION 

We obtained the estimates of the complexity of 
implementing the nonlinear polynomial functions of a preset 
number of variables on a programmable-architecture MPS. 
The estimates depend on both the PLD characteristics, i.e., the 
number of elements – generators of Boolean functions of a 
given number of variables, D-triggers, and input-output 
blocks, and the characteristics of the nonlinear polynomial 
functions to be implemented, i.e., numbers of variables and 
nonzero coefficients. The above estimates are defined for both 
the number of PLD elements and the number of PLD crystals 
included in the MPS, both existing and potential ones. 
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