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Abstract—The possibility of implementing a modeling of 

the flight of a small spacecraft in low earth orbit based on a 

client-server architecture was researched. Issues such as 

transmitting and displaying the system state, aggregating states 

at different points in time, and executing user code were 

discussed. The conducted studies demonstrate the benefits of 

using a client-server implementation in solving the problem of 

simulating the flight of a small spacecraft in near-earth orbit in 

a world of increasing interest in satellite developments. 
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I. INTRODUCTION 

In modern realities, people's interest in space exploration, 
in particular in the development of satellite technologies, is 
actively growing. As a result, the demand for professionals in 
this area is also increasing. This causes an increase in 
demand for educational resources on the topic. The creation 
of new software that simulates the flight of a small spacecraft 
in near-earth orbit makes it possible to increase the 
availability of the necessary knowledge for people wishing to 
continue working in this area in the future. However, 
nowadays, only few have expensive hardware to use 
demanding engineering software. 

There are several options of implementation for such 
software. One of the most affordable models is the client-
server model, which allows you to work with applications 
via an external, more powerful computer. Already existing 
analogues of such applications, for example, Autodesk CAD 
[1], have shown their efficiency and usefulness, but at the 
moment all such services have their use in other areas. 

All procedures are sent to execute by the client remotely 
and processed directly on the server. This can significantly 
reduce the necessary system requirements for the user, as 
well as expand the potentially interested audience of the 
software. In addition, when one need to make some 
calculations on the road, this model allows to send a request 
to the server and perform all the necessary calculations 
remotely. 

A. Client-server architecture 

Client-server model is an architecture that consists of two 
main parts: client systems and server systems. Data is 
exchanged between them. A client-server application, 
therefore, is a category of distributed systems consisting of 
client and server software. Client application constantly 
maintains a connection with the server and sends requests, 
and the server application listens for requests from the client. 
Such applications provide an opportunity to distribute the 

load, and to transfer part of the load from the client system to 
the server one. 

To implement communication and load distribution, it is 
necessary to define the interface between the client or server. 
In other words, to create an Application Programming 
Interface (API). 

B. Remote Procedure Call 

Remote Procedure Call (RPC) is an interprocess 
communication method that allows a computer program to 
call the execution of a procedure in a different address space, 
coded as a normal procedure call. In addition, RPC allows 
low-level transport protocol control. 

C. Small spacecrafts flight simulation in low-earth orbit 

In order to simulate the flight of a small spacecraft in a 
near-earth orbit, it is necessary to determine the state of the 
spacecraft and the state of the environment at each moment 
of time. Earth-centric inertial coordinate system may be used 
as the basic coordinate system for calculating the parameters 
of the motion of dynamic objects. The very same model of 
the Earth is set in the geocentric inertial coordinate system. 
The angle of rotation is determined by time. The motion of a 
spacecraft as a rigid body can be modeled by determining at 
each moment of its position and orientation in the geocentric 
inertial coordinate system. 

D. Spacecrafts position modelling; Simplified General 

Perturbation; Two-Line Element 

The main reason to model the position of a spacecraft is 
to predict the position of that spacecraft at a specific point in 
time, usually based on the orbital parameters. SGP4 - is an 
orbit prediction model that was developed by the 
headquarters of the North American Air Defense Command. 
Together with the SSN observational materials, the largest 
database of space objects in the world [2] was generated and 
presented in the form of TLE. TLE is a two-line data format 
representing a set of orbit parameters for an Earth satellite. 
Due to the fact that this database was generated using SGP4, 
it is impossible to achieve better prediction accuracy for TLE 
elements without using SGP4 itself. This leads us to the 
conclusion that SGP4 is widely used in all kinds of tasks. 
There are also HSGP / HTLE models for more accurate 
modeling, however, they are not required for simulation 
purposes [3]. 

E. Earth's geomagnetic field modeling; International 

Geomagnetic Reference Field 

The reason to model the Earth's magnetic field is to 
predict the induction vector or potential of the magnetic field 
at a given point, acting on the spacecraft from the side of the 
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Earth's magnetic field. IGRF is a series of mathematical 
models describing the main field of the Earth, as well as 
possible changes. The formula used in the model is as 
follows: 

 
 

 
  

(1) 

In (1), а = 6371.2 km, truncation degree N = 13. Many 
institutes and private organizations involved in the operation 
of magnetic imaging satellites constantly maintain and 
update the IGRF [4]. 

II. METHODOLOGY 

A. Client-server data exchange 

The project consists of three categories of entities. First 
on is client (including web-clients), that requests 
computation. The second is computation server, that 
responds to the requests by performing computations. Last 
one is the system that is being modeled. Client and server 
engage in a data exchange. Such data consists of sequence of 
remote procedure calls (RPC) that adhere to an API. In 
current project, gRPC [5] chosen as method for interface 
description due to its relative simplicity of use and 
comparatively low overhead (partly due to binary 
serialization). 

B. System state; discretization of system state over time 

To transmit and display the state of a system via RPC, the 
system’s state is requested from server in the set point in 
time. This method implies an explicit discretization of the 
system's state over time. Hence, each interval 

of length dt is being mapped to 
discrete value . Each   is consecutively mapped to a 
system’s state. This forms a sequence  of system states, 
where each element of a sequence is called a frame of the 
system's state. By defining a state transition function F: 

, as well as an initial state , it becomes possible 
to model the later frames. 

Each frame consists of the state of the modeled 
spacecraft (and its subsystems) and the environment’s state. 
This suggests, the new spacecraft state at each iteration is 
unstable until the end of the said iteration. For that reason, 
the usage of the new spacecraft state by the subsystem 
models limited to write-only access. On the other hand, the 
environment’s state is interchangeable throughout the 
simulation and hence can be read by the subsystems. The 
aforementioned properties lead to state transition function 
assuming the following form: T:  where  
represents the prior state of the spacecraft,  is the current 
state of the environment and  the new state of the 
spacecraft. 

C. Distribution of computation 

Spacecraft modelling can be optimized by running 
computations in parallel to each other. As an instance, 
modeling the spacecraft’s position as well as the 
environmental state can be performed independently of the 
spacecraft state computation. Therefore, computation of 
certain parameters separated into services. Services are the 
components that are independent from the main system. To 
be specific, computations of parameters such as the 
spacecraft position, geomagnetic field, solar position and 
visibility of the Sun can be separated into different services. 

These computations are required for practically every frame, 
yet they do not require information on the spacecraft state. 
Such properties also make it possible to perform 
computations in batches. 

D. Modeling the system and the subsystems 

In most cases of modelling a system, the internal 
structure is considered to be known only to a certain extent. 
At the highest level of abstraction, the system can be 
modeled as a “black box” that has a “state” as well as a state 
transition mechanism. At a lower level it is described by a set 
of interacting “black boxes” - subsystems. Likewise, each 
subsystem can be considered as its own set of interacting 
“black boxes”. With increasing “depth”, the number of 
elements present in the system grows, as does the complexity 
of modeling. In case of a client-server implementation with 
many concurrent users, a compromise has to be reached. The 
system has to work fast enough to serve the required number 
of users while fulfilling the quality-of-service requirements; 
At the same time, only a limited amount of resources can be 
allocated for each user. Finally, the users should, to a certain 
degree, be able to design and model different spacecraft 
configurations. For this work it was decided to only consider 
the system at a “set of subsystems” level. The focus lies with 
the small spacecraft at low earth orbit - specifically, cubesats 
from one to three units (1U - 3U). Since the cubesat design 
specification [6] defines the size of such spacecraft, some 
module size can be considered a unit. That unit - a “size of a 
slot” – allows to represent a spacecraft of each configuration 
as a number of available slots. Size of each module can also 
be represented as a number of slots. Finally, the slots of a 
single spacecraft can be indexed and mapped to the modules 
they contain as well as the information about them. 

E. State transition mechanism 

As mentioned earlier, modeling the system requires 
defining the notion of state as well as a state transition 
function. However, the modular nature of the system allows 
to describe every subsystem the same way. Several measures 
can be taken. First is to define the state of a system to include 
the states of its modules. Second – to make all the state 
transition functions to process the state of a system. This 
reduces the state transition for the system to generating the 
initial value of a new state, updating common parameters, 
and traversing the state transition functions of the modules. 
Considering that, as stated earlier, the new state is generally 
unstable until the end of the iteration, read access to the new 
state is limited. This makes it difficult to model the 
concurrent functioning of several similar modules. 

F. Modeling the algorithm provided by the user 

In modeling the spaceflight, it is important to provide a 
way to model the controlling algorithm as well. For this 
purpose, mechanisms of checking and executing the user-
provided code are required, as well as the data exchange 
system and the API.  

For the checking mechanism it is enough to restrict the 
usage of the language’s standard library as well as the third-
party libraries. For the C programming language, the 
standard library restriction can be reduced to prohibiting the 
usage of most of the standard library headers. A limit of one 
source code file per simulation can be introduced to restrict 
the usage of third-party libraries. Obviously, while working 
in a trusted environment, such as an internal network, some 
if not most of the limitations may be redundant.  
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Code execution functionality is mostly equivalent to a 
combination of code compilation and execution mechanism 
with the data exchange system. The compilation, in case of a 
successful check, represents an execution of a third-party 
compiler. The execution is, effectively, instantiation of a 
child process using the compiled executable as a base. 
Finally, the data exchange system can be implemented via 
methods such as named pipes, sockets, or memory-mapped 
files. Due to somewhat larger delays, sockets can be 
excluded from the list. In comparison, in Unix-based 
environments the difference between named pipes and 
memory-mapped files is smaller, so the choice is not that 
important. From the standpoint of the simplicity of 
development, it makes sense to use two channels of different 
directions, as compared to using one bidirectional channel. 
As for the API implementation, two entities are introduced 
on the side of the main system – the command queue and the 
command processor. Every time an API call is made in the 
user code, the user subsystem generates a message in the data 
exchange system. Each message contains the command name 
and the arguments. The main system accepts the message, 
reconstructs the command, and places it at the end of the 
queue. Each command has a cost assigned to it and the 
processor has a budget for execution. At every state 
transition the command processor takes one or multiple 
commands from the front of the queue and executes them. 
Commands can be classified as blocking and non-blocking. 
A non-blocking command does not require a response to be 
sent to the user subsystem and does not require the flow of 
user code execution to be halted. After a blocking command 
is sent, the flow of execution is interrupted until the 
command is executed at the main system and a response is 
received. The general algorithm is to execute commands 
from the queue while the budget is above zero. The 
processor executes the command in the front of the queue 
and subtracts its cost from the budget. If executing it will 
cause the budget to drop below zero, the execution is 
postponed until the next iteration. At every iteration the 
processor budget remainder is increased by the initial value 
of the budget, but the total budget is limited at twice the 
initial value. 

G. Timing and aggregation mechanism 

In the exchange of data within the client-server system, 
timing is extremely important. Assuming framerate f and 
number of users n, the share of time available for one user is 

; the share of time per frame is hence . The time 
since the beginning of the simulation measured at the server 
may differ from the same time measured at the client. That 
may happen due to frame loss or errors with displaying. 
Generating frames at frequency that is higher than the 
framerate allows to lessen the scale of this problem. To be 
specific, let the generation rate be the display rate times k, 
for some natural number k. Then, on average, for each frame 
displayed, k frames will be lost. However, that will also 
increase both the accuracy of the simulation and the quality 
of service for the client. In addition, with generation rate 
exceeding framerate, it becomes possible to view the 
modeling process with more detail. 

The amount of frames the client requests at once is also 
worth considering. Requesting frames in batches reduces 
delay as long as the average frame size is below the packet’s 
maximum size. That causes a problem, since the frame that 
the user sees when the command is sent will generally not be 
the same as the last computed frame. Still, in real conditions 

there also exists a significant (relative to the period of time 
corresponding to a single frame) delay between when the 
command is sent and when it is executed. Furthermore, 
limiting the interaction between the user and the model 
throughout the simulation reduces the significance of this 
problem. It can completely disappear if such interaction is 
prohibited. 

The number of frames to be requested at once can be 
derived at client by keeping track of several parameters. 
Specifically, time tr since the last request, amount of frames 
N that were used since then, and the expected time  till the 

next request. Rate of frame usage , multiplied by  gives 

an estimate  for the number of frames required. 

The minimum buffer size can also be found - at any moment, 
the buffer must contain enough frames to keep functioning 
properly long enough for the new batch of frames to be 
requested and received. This critical amount  is equal to 
the amount of time the request takes divided by the rate of 
frame usage. It is also possible to use two buffers instead of 
one to make the user experience smoother. When one of the 
buffers is emptied, the buffers are exchanged, and new 
frames are requested into the now-empty buffer. 

This way, the size of a buffer at any given moment of 
time must be greater than , and greater than any possible 
sum of  and , or n and , which can be achieved by 
making the buffer dynamic. It is possible to introduce an 
algorithm for requesting new frames before reaching the 
critical amount. For instance, by requesting frames when 

 frames are left in the current buffer, where k is the 
“instability” quotient. As an initial value, 2 is enough, then it 
can be corrected after each request. If by the time the new 
frames are received less than  elements remain in the 
buffer, k has to be increased, and decreased otherwise. The 
absolute value of a change can be named dk. For each 
successive case, where less than  frames remained—for 
each successive failure—  can be increased by a factor of 
two. For each consecutive case of the opposite - decreased by 
a factor of two. As an initial value,  can be taken to be 0.5, 
and the maximum value of k can be taken to be 17.5, which 
corresponds to five consecutive failures from the initial 
value. 

H. Modeling and accounting for the specifics of the real-

world spacecraft 

The number of spacecraft in orbit of our planet only 
increases each year. According to statistics, in 2020, the 
number of launched satellites exceeded 900 [7]. The  
cosmonautics history so far has only one major unplanned 
collision of satellites, which lead to release of a huge amount 
of space debris [8] and many cases of targeted spacecraft 
destruction. The moment of spacecraft collision with debris 
becoming not an accident, but an economic risk is not far off. 
Therefore, when modeling the orbit of a spacecraft, it is 
important to consider not only its mission, but also the 
features of neighboring vehicles, whether they are working 
satellites or what is left of them. To account for the majority 
of satellites, it is sufficient to regularly update the database of 
orbit parameters (TLE), but satellites with engines for orbital 
movement can significantly change their position in a short 
time. That means, using regular TLE databases is not 
enough. To consider all risks, it is required to form a 
database containing not only the information about the 
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location of the vehicle and its orbit, but also the details of the 
mission, payload and orientation systems. 

III. RESULTS 

Throughout modeling the spacecraft position via SGP4 
model, computation delays were measured for a case of 1 
frame per request and varying levels of aggregation. Results 
provided in Table I correspond to a configuration where the 
server system is located on the same device as the client 
system. The results display an obvious decrease in delay per 
frame with the rising batch size. This data implies that the 
computation itself takes less time than sending and receiving 
data. However, the batch size is limited as the overall delay 
increases with the number of frames per request, and only a 
limited share of computation time can be allocated to a single 
user. In case of hundred concurrent users, allocated to user 
10 microseconds each every second of server work, which is 
more than enough to generate the number of frames needed. 

TABLE I.  THE DEPENDENCE OF DELAYS ON THE NUMBER OF FRAMES 

PER REQUEST FOR THE SGP4 MODEL 

Frames per 

request 

(batch size) 

Delay (microseconds) 

Delay per 

frame 

(microseconds) 

1 57.8857 57.8857 

10 71.5283 7.15283 

25 95.9283 3.83713 

50 128.01 2.5602 

75 163.585 2.18113 

100 193.436 1.93436 

150 258.443 1.72295 

200 321.611 1.60806 

300 465.759 1.5492 

Model construction time, which is the time taken to 
compute the model parameters, is not considered in table 1, 
as it happens only once per simulation. In addition, the table 
only contains the data for the case of the server and client 
simultaneously residing on the same device. However, the 
delay between the client and server can be considered 
constant, meaning the results comparable to the 
configuration with remote clients.  

As the results of environmental computation are similar 
to results in table 1 they are not mentioned separately. The 
data also shows the same trends for the simulation, since the 
computation on the server proceed independently from user’s 
actions. 

IV. DISCUSSION 

The simulations performed show the delays of 
information transmission between the client and the server. 
Throughout the normal workflow, the user can encounter a 
varying delay depending on the location and connection 
quality of the user. Aggregation of frames allows to 
smoothen the effects of this delay. Although, this causes the 
inconsistency between the last moment displayed and the last 
moment computed. This problem is not significant if we take 
into account the fact that the software does not imply direct 
user interaction with simulation during the computing 
process, which in turn smoothens the majority of the 
negative aspects of the user experience associated with using 

remote devices.. Furthermore, the inconsistency problem can 
also be mitigated via the introduction of mid-simulation 
interruptions with the purpose of correcting the model. 

V. CONCLUSION 

The growing interest in the field of satellite 
developments, as well as the general growth of planetary 
launches, associated with the development of 
microelectronics and the popularity of nanosatellites, entails 
an increase in demand for professionals in the field. The 
results of this work demonstrates the benefits of using client-
server implementation in solving the problem of simulating 
the flight of a small spacecraft in near-earth orbit in order to 
increase the overall availability of software tools for both 
education and professional work. The consequences of the 
pandemic in the IT sector have revealed a clear lack of 
devices capable of even a simple video call, not to mention a 
CPU-dependent computing, among users. This problem has 
led to the inability of suppliers to meet the demand of buyers, 
such as office workers switching to "work from home" 
lifestyle. The problem of software availability for an ordinary 
user does not stop at the license agreement, but directly 
depends on the user's equipment with the appropriate 
hardware. Projects like this can serve as an example of 
improving the availability of educational, professional and 
semi-professional software. Positive results of the system’s 
efficiency consider the possibility of developing professional 
software for modeling flight of a small spacecraft in near-
earth orbit using client-server architecture. Such a modelling 
task will only get more complicated over time, as the growth 
of outer space clutter  has already begun to influence the 
design of the latest vehicles capable of self-destruction by 
burning in the atmosphere [9]. The question of spacecraft in 
orbit safety ceases to lean only on the choice of the orbit, and 
soon for this it will be necessary not only to implement 
orbital navigation, but to take into account similar 
functionality in other devices. Such task is impossible 
without taking into account a huge number of parameters and 
external influences, which can be taken into account only 
with full computer modeling. 
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