
2021 International Seminar on Electron Devices Design and Production (SED)

978-1-6654-3941-1 @2021 IEEE

Client-Server Implementation in Solving the

Problem of Modeling the Small Spacecraft Flight at

Low-Earth Orbit

V.Baleskin, A. Kosinov, L. Romanov, I. Motajlenko,

National Research University Higher School of Economics, Moscow

vbaleskin@hse.ru, akosinov@hse.ru, lromanov@hse.ru, imotajlenko@hse.ru

Abstract—The possibility of implementing a modeling of

the flight of a small spacecraft in low earth orbit based on a

client-server architecture was researched. Issues such as

transmitting and displaying the system state, aggregating states

at different points in time, and executing user code were

discussed. The conducted studies demonstrate the benefits of

using a client-server implementation in solving the problem of

simulating the flight of a small spacecraft in near-earth orbit in

a world of increasing interest in satellite developments.

Keywords—client-server systems, low earth orbit satellites,

design automation, computer simulation

I. INTRODUCTION

In modern realities, people's interest in space exploration,
in particular in the development of satellite technologies, is
actively growing. As a result, the demand for professionals in
this area is also increasing. This causes an increase in
demand for educational resources on the topic. The creation
of new software that simulates the flight of a small spacecraft
in near-earth orbit makes it possible to increase the
availability of the necessary knowledge for people wishing to
continue working in this area in the future. However,
nowadays, only few have expensive hardware to use
demanding engineering software.

There are several options of implementation for such
software. One of the most affordable models is the client-
server model, which allows you to work with applications
via an external, more powerful computer. Already existing
analogues of such applications, for example, Autodesk CAD
[1], have shown their efficiency and usefulness, but at the
moment all such services have their use in other areas.

All procedures are sent to execute by the client remotely
and processed directly on the server. This can significantly
reduce the necessary system requirements for the user, as
well as expand the potentially interested audience of the
software. In addition, when one need to make some
calculations on the road, this model allows to send a request
to the server and perform all the necessary calculations
remotely.

A. Client-server architecture

Client-server model is an architecture that consists of two
main parts: client systems and server systems. Data is
exchanged between them. A client-server application,
therefore, is a category of distributed systems consisting of
client and server software. Client application constantly
maintains a connection with the server and sends requests,
and the server application listens for requests from the client.
Such applications provide an opportunity to distribute the

load, and to transfer part of the load from the client system to
the server one.

To implement communication and load distribution, it is
necessary to define the interface between the client or server.
In other words, to create an Application Programming
Interface (API).

B. Remote Procedure Call

Remote Procedure Call (RPC) is an interprocess
communication method that allows a computer program to
call the execution of a procedure in a different address space,
coded as a normal procedure call. In addition, RPC allows
low-level transport protocol control.

C. Small spacecrafts flight simulation in low-earth orbit

In order to simulate the flight of a small spacecraft in a
near-earth orbit, it is necessary to determine the state of the
spacecraft and the state of the environment at each moment
of time. Earth-centric inertial coordinate system may be used
as the basic coordinate system for calculating the parameters
of the motion of dynamic objects. The very same model of
the Earth is set in the geocentric inertial coordinate system.
The angle of rotation is determined by time. The motion of a
spacecraft as a rigid body can be modeled by determining at
each moment of its position and orientation in the geocentric
inertial coordinate system.

D. Spacecrafts position modelling; Simplified General

Perturbation; Two-Line Element

The main reason to model the position of a spacecraft is
to predict the position of that spacecraft at a specific point in
time, usually based on the orbital parameters. SGP4 - is an
orbit prediction model that was developed by the
headquarters of the North American Air Defense Command.
Together with the SSN observational materials, the largest
database of space objects in the world [2] was generated and
presented in the form of TLE. TLE is a two-line data format
representing a set of orbit parameters for an Earth satellite.
Due to the fact that this database was generated using SGP4,
it is impossible to achieve better prediction accuracy for TLE
elements without using SGP4 itself. This leads us to the
conclusion that SGP4 is widely used in all kinds of tasks.
There are also HSGP / HTLE models for more accurate
modeling, however, they are not required for simulation
purposes [3].

E. Earth's geomagnetic field modeling; International

Geomagnetic Reference Field

The reason to model the Earth's magnetic field is to
predict the induction vector or potential of the magnetic field
at a given point, acting on the spacecraft from the side of the

2021 International Seminar on Electron Devices Design and Production (SED)

Earth's magnetic field. IGRF is a series of mathematical
models describing the main field of the Earth, as well as
possible changes. The formula used in the model is as
follows:

 


(1)

In (1), а = 6371.2 km, truncation degree N = 13. Many
institutes and private organizations involved in the operation
of magnetic imaging satellites constantly maintain and
update the IGRF [4].

II. METHODOLOGY

A. Client-server data exchange

The project consists of three categories of entities. First
on is client (including web-clients), that requests
computation. The second is computation server, that
responds to the requests by performing computations. Last
one is the system that is being modeled. Client and server
engage in a data exchange. Such data consists of sequence of
remote procedure calls (RPC) that adhere to an API. In
current project, gRPC [5] chosen as method for interface
description due to its relative simplicity of use and
comparatively low overhead (partly due to binary
serialization).

B. System state; discretization of system state over time

To transmit and display the state of a system via RPC, the
system’s state is requested from server in the set point in
time. This method implies an explicit discretization of the
system's state over time. Hence, each interval

of length dt is being mapped to
discrete value . Each is consecutively mapped to a
system’s state. This forms a sequence of system states,
where each element of a sequence is called a frame of the
system's state. By defining a state transition function F:

, as well as an initial state , it becomes possible
to model the later frames.

Each frame consists of the state of the modeled
spacecraft (and its subsystems) and the environment’s state.
This suggests, the new spacecraft state at each iteration is
unstable until the end of the said iteration. For that reason,
the usage of the new spacecraft state by the subsystem
models limited to write-only access. On the other hand, the
environment’s state is interchangeable throughout the
simulation and hence can be read by the subsystems. The
aforementioned properties lead to state transition function
assuming the following form: T: where
represents the prior state of the spacecraft, is the current
state of the environment and the new state of the
spacecraft.

C. Distribution of computation

Spacecraft modelling can be optimized by running
computations in parallel to each other. As an instance,
modeling the spacecraft’s position as well as the
environmental state can be performed independently of the
spacecraft state computation. Therefore, computation of
certain parameters separated into services. Services are the
components that are independent from the main system. To
be specific, computations of parameters such as the
spacecraft position, geomagnetic field, solar position and
visibility of the Sun can be separated into different services.

These computations are required for practically every frame,
yet they do not require information on the spacecraft state.
Such properties also make it possible to perform
computations in batches.

D. Modeling the system and the subsystems

In most cases of modelling a system, the internal
structure is considered to be known only to a certain extent.
At the highest level of abstraction, the system can be
modeled as a “black box” that has a “state” as well as a state
transition mechanism. At a lower level it is described by a set
of interacting “black boxes” - subsystems. Likewise, each
subsystem can be considered as its own set of interacting
“black boxes”. With increasing “depth”, the number of
elements present in the system grows, as does the complexity
of modeling. In case of a client-server implementation with
many concurrent users, a compromise has to be reached. The
system has to work fast enough to serve the required number
of users while fulfilling the quality-of-service requirements;
At the same time, only a limited amount of resources can be
allocated for each user. Finally, the users should, to a certain
degree, be able to design and model different spacecraft
configurations. For this work it was decided to only consider
the system at a “set of subsystems” level. The focus lies with
the small spacecraft at low earth orbit - specifically, cubesats
from one to three units (1U - 3U). Since the cubesat design
specification [6] defines the size of such spacecraft, some
module size can be considered a unit. That unit - a “size of a
slot” – allows to represent a spacecraft of each configuration
as a number of available slots. Size of each module can also
be represented as a number of slots. Finally, the slots of a
single spacecraft can be indexed and mapped to the modules
they contain as well as the information about them.

E. State transition mechanism

As mentioned earlier, modeling the system requires
defining the notion of state as well as a state transition
function. However, the modular nature of the system allows
to describe every subsystem the same way. Several measures
can be taken. First is to define the state of a system to include
the states of its modules. Second – to make all the state
transition functions to process the state of a system. This
reduces the state transition for the system to generating the
initial value of a new state, updating common parameters,
and traversing the state transition functions of the modules.
Considering that, as stated earlier, the new state is generally
unstable until the end of the iteration, read access to the new
state is limited. This makes it difficult to model the
concurrent functioning of several similar modules.

F. Modeling the algorithm provided by the user

In modeling the spaceflight, it is important to provide a
way to model the controlling algorithm as well. For this
purpose, mechanisms of checking and executing the user-
provided code are required, as well as the data exchange
system and the API.

For the checking mechanism it is enough to restrict the
usage of the language’s standard library as well as the third-
party libraries. For the C programming language, the
standard library restriction can be reduced to prohibiting the
usage of most of the standard library headers. A limit of one
source code file per simulation can be introduced to restrict
the usage of third-party libraries. Obviously, while working
in a trusted environment, such as an internal network, some
if not most of the limitations may be redundant.

2021 International Seminar on Electron Devices Design and Production (SED)

Code execution functionality is mostly equivalent to a
combination of code compilation and execution mechanism
with the data exchange system. The compilation, in case of a
successful check, represents an execution of a third-party
compiler. The execution is, effectively, instantiation of a
child process using the compiled executable as a base.
Finally, the data exchange system can be implemented via
methods such as named pipes, sockets, or memory-mapped
files. Due to somewhat larger delays, sockets can be
excluded from the list. In comparison, in Unix-based
environments the difference between named pipes and
memory-mapped files is smaller, so the choice is not that
important. From the standpoint of the simplicity of
development, it makes sense to use two channels of different
directions, as compared to using one bidirectional channel.
As for the API implementation, two entities are introduced
on the side of the main system – the command queue and the
command processor. Every time an API call is made in the
user code, the user subsystem generates a message in the data
exchange system. Each message contains the command name
and the arguments. The main system accepts the message,
reconstructs the command, and places it at the end of the
queue. Each command has a cost assigned to it and the
processor has a budget for execution. At every state
transition the command processor takes one or multiple
commands from the front of the queue and executes them.
Commands can be classified as blocking and non-blocking.
A non-blocking command does not require a response to be
sent to the user subsystem and does not require the flow of
user code execution to be halted. After a blocking command
is sent, the flow of execution is interrupted until the
command is executed at the main system and a response is
received. The general algorithm is to execute commands
from the queue while the budget is above zero. The
processor executes the command in the front of the queue
and subtracts its cost from the budget. If executing it will
cause the budget to drop below zero, the execution is
postponed until the next iteration. At every iteration the
processor budget remainder is increased by the initial value
of the budget, but the total budget is limited at twice the
initial value.

G. Timing and aggregation mechanism

In the exchange of data within the client-server system,
timing is extremely important. Assuming framerate f and
number of users n, the share of time available for one user is

; the share of time per frame is hence . The time
since the beginning of the simulation measured at the server
may differ from the same time measured at the client. That
may happen due to frame loss or errors with displaying.
Generating frames at frequency that is higher than the
framerate allows to lessen the scale of this problem. To be
specific, let the generation rate be the display rate times k,
for some natural number k. Then, on average, for each frame
displayed, k frames will be lost. However, that will also
increase both the accuracy of the simulation and the quality
of service for the client. In addition, with generation rate
exceeding framerate, it becomes possible to view the
modeling process with more detail.

The amount of frames the client requests at once is also
worth considering. Requesting frames in batches reduces
delay as long as the average frame size is below the packet’s
maximum size. That causes a problem, since the frame that
the user sees when the command is sent will generally not be
the same as the last computed frame. Still, in real conditions

there also exists a significant (relative to the period of time
corresponding to a single frame) delay between when the
command is sent and when it is executed. Furthermore,
limiting the interaction between the user and the model
throughout the simulation reduces the significance of this
problem. It can completely disappear if such interaction is
prohibited.

The number of frames to be requested at once can be
derived at client by keeping track of several parameters.
Specifically, time tr since the last request, amount of frames
N that were used since then, and the expected time till the

next request. Rate of frame usage , multiplied by gives

an estimate for the number of frames required.

The minimum buffer size can also be found - at any moment,
the buffer must contain enough frames to keep functioning
properly long enough for the new batch of frames to be
requested and received. This critical amount is equal to
the amount of time the request takes divided by the rate of
frame usage. It is also possible to use two buffers instead of
one to make the user experience smoother. When one of the
buffers is emptied, the buffers are exchanged, and new
frames are requested into the now-empty buffer.

This way, the size of a buffer at any given moment of
time must be greater than , and greater than any possible
sum of and , or n and , which can be achieved by
making the buffer dynamic. It is possible to introduce an
algorithm for requesting new frames before reaching the
critical amount. For instance, by requesting frames when

 frames are left in the current buffer, where k is the
“instability” quotient. As an initial value, 2 is enough, then it
can be corrected after each request. If by the time the new
frames are received less than elements remain in the
buffer, k has to be increased, and decreased otherwise. The
absolute value of a change can be named dk. For each
successive case, where less than frames remained—for
each successive failure— can be increased by a factor of
two. For each consecutive case of the opposite - decreased by
a factor of two. As an initial value, can be taken to be 0.5,
and the maximum value of k can be taken to be 17.5, which
corresponds to five consecutive failures from the initial
value.

H. Modeling and accounting for the specifics of the real-

world spacecraft

The number of spacecraft in orbit of our planet only
increases each year. According to statistics, in 2020, the
number of launched satellites exceeded 900 [7]. The
cosmonautics history so far has only one major unplanned
collision of satellites, which lead to release of a huge amount
of space debris [8] and many cases of targeted spacecraft
destruction. The moment of spacecraft collision with debris
becoming not an accident, but an economic risk is not far off.
Therefore, when modeling the orbit of a spacecraft, it is
important to consider not only its mission, but also the
features of neighboring vehicles, whether they are working
satellites or what is left of them. To account for the majority
of satellites, it is sufficient to regularly update the database of
orbit parameters (TLE), but satellites with engines for orbital
movement can significantly change their position in a short
time. That means, using regular TLE databases is not
enough. To consider all risks, it is required to form a
database containing not only the information about the

2021 International Seminar on Electron Devices Design and Production (SED)

location of the vehicle and its orbit, but also the details of the
mission, payload and orientation systems.

III. RESULTS

Throughout modeling the spacecraft position via SGP4
model, computation delays were measured for a case of 1
frame per request and varying levels of aggregation. Results
provided in Table I correspond to a configuration where the
server system is located on the same device as the client
system. The results display an obvious decrease in delay per
frame with the rising batch size. This data implies that the
computation itself takes less time than sending and receiving
data. However, the batch size is limited as the overall delay
increases with the number of frames per request, and only a
limited share of computation time can be allocated to a single
user. In case of hundred concurrent users, allocated to user
10 microseconds each every second of server work, which is
more than enough to generate the number of frames needed.

TABLE I. THE DEPENDENCE OF DELAYS ON THE NUMBER OF FRAMES

PER REQUEST FOR THE SGP4 MODEL

Frames per

request

(batch size)

Delay (microseconds)

Delay per

frame

(microseconds)

1 57.8857 57.8857

10 71.5283 7.15283

25 95.9283 3.83713

50 128.01 2.5602

75 163.585 2.18113

100 193.436 1.93436

150 258.443 1.72295

200 321.611 1.60806

300 465.759 1.5492

Model construction time, which is the time taken to
compute the model parameters, is not considered in table 1,
as it happens only once per simulation. In addition, the table
only contains the data for the case of the server and client
simultaneously residing on the same device. However, the
delay between the client and server can be considered
constant, meaning the results comparable to the
configuration with remote clients.

As the results of environmental computation are similar
to results in table 1 they are not mentioned separately. The
data also shows the same trends for the simulation, since the
computation on the server proceed independently from user’s
actions.

IV. DISCUSSION

The simulations performed show the delays of
information transmission between the client and the server.
Throughout the normal workflow, the user can encounter a
varying delay depending on the location and connection
quality of the user. Aggregation of frames allows to
smoothen the effects of this delay. Although, this causes the
inconsistency between the last moment displayed and the last
moment computed. This problem is not significant if we take
into account the fact that the software does not imply direct
user interaction with simulation during the computing
process, which in turn smoothens the majority of the
negative aspects of the user experience associated with using

remote devices.. Furthermore, the inconsistency problem can
also be mitigated via the introduction of mid-simulation
interruptions with the purpose of correcting the model.

V. CONCLUSION

The growing interest in the field of satellite
developments, as well as the general growth of planetary
launches, associated with the development of
microelectronics and the popularity of nanosatellites, entails
an increase in demand for professionals in the field. The
results of this work demonstrates the benefits of using client-
server implementation in solving the problem of simulating
the flight of a small spacecraft in near-earth orbit in order to
increase the overall availability of software tools for both
education and professional work. The consequences of the
pandemic in the IT sector have revealed a clear lack of
devices capable of even a simple video call, not to mention a
CPU-dependent computing, among users. This problem has
led to the inability of suppliers to meet the demand of buyers,
such as office workers switching to "work from home"
lifestyle. The problem of software availability for an ordinary
user does not stop at the license agreement, but directly
depends on the user's equipment with the appropriate
hardware. Projects like this can serve as an example of
improving the availability of educational, professional and
semi-professional software. Positive results of the system’s
efficiency consider the possibility of developing professional
software for modeling flight of a small spacecraft in near-
earth orbit using client-server architecture. Such a modelling
task will only get more complicated over time, as the growth
of outer space clutter has already begun to influence the
design of the latest vehicles capable of self-destruction by
burning in the atmosphere [9]. The question of spacecraft in
orbit safety ceases to lean only on the choice of the orbit, and
soon for this it will be necessary not only to implement
orbital navigation, but to take into account similar
functionality in other devices. Such task is impossible
without taking into account a huge number of parameters and
external influences, which can be taken into account only
with full computer modeling.

VI. ACKNOWLEDGMENT

Authors note that this article was prepared within the
framework of the Basic Research Program at the National
Research University Higher School of Economics.

REFERENCES

[1] “Cloud based online cad software.” Accessed on: Jan. 20, 2020.

[Online]. Available: https://www.autodesk.ru/solutions/cloud-based-online-

cad-software.

[2] V. ~M. Agapov, “Space Objects Data Catalogue,” in Space Debris,

2001, vol. 2, pp. 759–763.

[3] W. Dong and Z. Chang-yin, “An Accuracy Analysis of the SGP4/SDP4

Model,” Chinese Astron. Astrophys., vol. 34, no. 1, pp. 69–76, 2010, doi:

https://doi.org/10.1016/j.chinastron.2009.12.009.

[4] “IAGA V-MOD Geomagnetic field modeling: International

Geomagnetic Reference Field.” Accessed on: Dec. 1, 2020. [Online].

Available: https://www.ngdc.noaa.gov/IAGA/vmod/igrf.htm.

[5] “gRPC.” Accessed on: Sep. 19, 2020. [Online]. Available:

https://grpc.io.

[6] “CubeSat Design Specification Rev. 13, The CubeSat Program, Cal

Poly SLO.” Accessed on: Oct. 3, 2020. [Online]. Available:

https://static1.squarespace.com/static/5418c831e4b0fa4ecac1bacd/t/56e9b62

337013b6c063a655a/1458157095454/cds_rev13_final2.pdf.

[7] “Orbital Launches of 2020 - Gunter’s Space Page.” Accessed on: Dec.

3, 2020. [Online]. Available:

https://space.skyrocket.de/doc_chr/lau2020.htm.

2021 International Seminar on Electron Devices Design and Production (SED)

[8] “2009 Iridium-Cosmos Collision Fact Sheet.” Accessed on: Sep. 21,

2020. [Online]. Available:

https://swfound.org/media/6575/swf_iridium_cosmos_collision_fact_sheet_

updated_2012.pdf.

[9] “Liou J. C. The 2019 US government orbital debris mitigation standard

practices. – 2020.” Accessed on: Dec. 3, 2020. [Online]. Available:

https://orbitaldebris.jsc.nasa.gov/library/usg_od_standard_practices.pdf.

