
2021 International Seminar on Electron Devices Design and Production (SED)

978-1-6654-3941-1 @2021 IEEE

Fig. 1. MapReduce Computational model

Understanding join strategies in distributed systems

Yevgeniya Tyryshkina

National Research University Higher

School of Economics

Moscow, Russia

tyryshkina_evgeniya@mail.ru

Abstract— This article discusses the features of distributed

computing in systems based on MapReduce, analyzes join

strategies in Apache Spark, gives basic recommendations for

optimizing join operation, and proposes an algorithm of the

join operation for distributed data warehouses, which

increases the processing speed. Experimental data represents

that the method becomes more effective when the volume of

initial data increases. So, for 2 TB data, the join operation was

performed ~ 37% faster, for 7 TB data already by ~ 47%.

Keywords— MapReduce, distributed systems, Apache Spark,

data warehouses, analytics

I. INTRODUCTION

The need for a new engine and programming model for
data analysis has arisen due to the trend in computer
programming that is common across technology industries
and changes in the underlying hardware and computer
applications. For a long time, the speed of computation has
increased due to the increase in processor performance:
every year new processors were able to perform more
operations per second than before. As a result, applications
became faster without the need for code changes. This trend
has created a large and resilient ecosystem of applications
running on only one processor, which has spurred the
development of more powerful processors necessary to
maintain scalability and data growth over time. This trend
towards hardware expansion ended around 2005: hardware
designers faced severe heat dissipation constraints, so they
had to abandon the performance acceleration of one
processor and switch to the promising direction of
parallelizing central processor cores operating at the same
speed. This meant for software developers that to make
applications run faster, it was necessary to modify from the
code, add parallelism, which laid the foundation for new
programming models, such as, for example, Apache Spark.
Another important factor in the development of such
technologies is the constant decline in the cost of storage and
data collection, which did not slow down along with the
decrease in the growth of processor performance. Every 14
months, the cost of storing 1TB of data is reduced by almost
2 times, thus allowing organizations of all sizes to create
analytical systems built on large data warehouses.

II. MAPREDUCE TECHNOLOGY

A. The concept of MapReduce

MapReduce is a distributed model that was created for
parallel computing and is used in big data technologies. The
Mappreduce technology allows computations on very large
datasets of several petabytes and works in computer clusters
of hundreds of nodes. This technology was first introduced
by Google. [1].

MapReduce can rightfully be called the main Big Data
technology because it is initially focused on parallel
computing in distributed clusters. The MapReduce

technology is based on the principle of dividing information
into many parts, these parts are distributed between
individual nodes in a cluster, which allows parallel data
processing. Development of MapReduce applications is quite
simple to implement, since programs are automatically
distributed among the cluster nodes. The executive system
takes care of the implementation details. It is responsible for
the separation of input data and exchange between
computational nodes, distributes tasks between them, and in
addition, automatic fault handling is supported. Thanks to
this, programmers can easily and efficiently use the resources
of distributed Big Data systems. MapRedutse technology is
extremely universal and can be applied in completely
different areas: from indexing web pages, calculating the
amount of content on different hosts, reversing the graph of
web links and building inverted indexes or implementing
counters for requests to a web host to complex analytical
tasks using machine learning technologies that require
processing huge amounts of data, such as machine
translation or clustering documents. Also, MapReduce is
adapted for multiprocessor systems, voluntary computing,
dynamic cloud and mobile environments [2].

B. Computational model

The concept of MapReduce is that the process of
processing data stored in one or more files is divided into
two phases: map and reduce [3]. The result is key-value
pairs. Each phase has a key value as input and output.
Intermediate results obtained after the completion of the map
stage are moved between the nodes of the cluster. This
movement is called shuffle. After that, the reduction phase
begins. These steps can be repeated several times.

 In more detail, the 5 stages of data processing are
presented in Figure 1.

• Map - preprocessing input data as a large list of
values. At the same time, the main node is
responsible for dividing the key-value list into several
parts and transferring it to the worker nodes for

2021 International Seminar on Electron Devices Design and Production (SED)

Fig. 2. Apache Spark architecture[4]

Fig. 3. Types of data exchange topologies (initial partitioning,

redistribution, full merge, partial redistribution and partial merge)

[5]

execution. The task of each worker node is to perform
a transformation operation to its local data and save
the obtained result.

• Shuffle, when worker nodes redistribute data based
on the keys previously generated by the Map function
so that all the data for one key resides on one worker
node;

• Reduce is an operation for reducing the list of key-
values obtained as a result of the Map operation,
which is performed in parallel on each worker node
for each group, combined by a key. The result of the
operation is collected by the main node. The master
node receives intermediate responses from worker
nodes and transmits them to free nodes for the next
step.

 These steps are repeated a number of times, depending on
the problem, and the final result is a solution to the original
problem.

 The procedure of data transformation of (key, value)
pairs is shown as follows:

 Map: (k1, v1) → List (k2, v2)

 Reduce: (k2, List (v2)) → List (k3, v3)

III. APACHE SPARK

Apache Spark is a complete computing system that
provides a set of libraries for performing data processing in
distributed cluster systems. Currently, among the open
source tools used to solve such problems, spark is recognized
as the most actively developing. The pace of development,
high efficiency and ease of use makes this tool very useful
for any specialist interested in solving computational
problems in big data.

Development can be done in several widely used
programming languages such as Python, Java, Scala, and R.
Tasks can be run from a laptop or compute cluster of
thousands of nodes. Spark can solve a wide range of tasks
from SKL and machine learning to streaming data
processing. This makes Apache Spark a convenient start-up
system, flowing into big data processing on an incredibly

huge scale.

A Spark application consists of a single control process,
called a driver, and a set of executing processes called
executors, that are dispersed across the cluster nodes [4].

The driver provides high-level control of the workflow.
Executors ensure that work is done in the form of tasks, as
well as storing any data that the user wants to cache. The
driver and executors work throughout the entire program

execution process, while resources for the executors are
dynamically allocated. Each performer is capable of
performing several tasks in parallel. The deployment of these
processes to the cluster is handled by the cluster manager
(YARN, Mesos, or Spark Standalone), but the driver and
executors are present in every Spark application.

IV. JOIN STRATEGIES

Traditionally, joins are classified according to semantic
characteristics into cross join, inner join, outer join and semi-
join. In this paper, we consider the possibility of speeding up
a particular case of a join operation: a left outer join , that is,
all values from the left set are included in the final selection,
regardless of whether there are key matches in the right set.
If a matching identifier is found in the corresponding table, it
is returned or a null value is added.

The following algorithms are distinguished according to
the different ways of implementing the join: joins with
nested loops, joins based on sorting, and joins based on the
hash. Also, some tools allow the use of secondary data
structures such as secondary indexes, join indexes, bitmap
indexes, Bloom filters. Such secondary structures are created
to further improve the basic join algorithms. Although these
well-known traditional methods of data processing used in
relational DBMSs are adapting to the new conditions of
distributed computing, such approaches are rarely applied.
Approaches with building additional indexes are often
ineffective since it can take too much time to rebuild the
indexes during the computation process, which completely
covers the resulting speedup on the join.

In a distributed environment, the additional concept of
connection graph topology is introduced. Graph topology
reflects how data partitions will be processed in a distributed
system and this depends on several of the following factors:
[5]:

• partitioning scheme that characterizes data partitioning
in the system into partitions. The partitioning scheme
consists of a partitioning function (for example, hash, range,
or arbitrary partitioning), a key, and a partition counter.

• data exchange operators that change the partitioning
scheme of the dataset and include initial partitioning,
redistribution, full merge, partial redistribution, and partial
merge (Figure 3).

• merge schemes that modify data exchange statements to
provide certain additional properties within a section (for
example, order).

 • partitioning policies, which determine whether
partitions can be duplicated across multiple worker nodes,
and include duplicate distribution and non-duplication
distribution.

2021 International Seminar on Electron Devices Design and Production (SED)

Fig. 4. The scheme of ideal partitioning, in which the data is evenly

divided into partitions and each partition (P) is entirely located on

one executor (Executor)

Fig. 5. Broadcast join

Table A

Table B

p0

p1

p2

p3

Table B

Table B

Table B

Table B

Join

Result Table

Fig. 7. Shuffle Hash Join

Table A

p0

p1

p2

p3

Table B

p0

p1

p2

p3

Result Table

p0

p1

p2

p3

p4

p0

p1

p2

Join

Without sort
Without sort

Fig. 6. Sort merge join

Table A

p0

p1

p2

p3

Table B

p0

p1

p2

p3

Result Table

p0

p1

p2

p3

p4

p0

p1

p2

Join

Shuffle Shuffle

p0

p1

p2

p3

p0

p1

p2

p3

sort sort

The basic idea of partitioning is quite simple - instead of
storing data in one piece, we will divide it into several
independent parts. All parts retain the primary key from the
original part, so any data can be accessed quickly enough.

In order to choose the correct strategy for combining
data, Spark needs to perform the stage of building a physical
plan for the query execution.

A. Broadcast join.

 The most effective way to combine data is when one side
of the combination is small. This criterion can be influenced
by changing the spark.sql.autoBroadcastJoinThreshold
parameter in SQLConf. In this case, the small side is copied
to all executive nodes, where it becomes possible to connect
to the main table locally.

 Keep in mind that there is a maximum size limit for a
smaller table when it is still possible to use a broadcast join.
Spark recently increased this size from 2GB to 8GB. In
addition to the size of the data, keep in mind that in the case
of an outer join, the spark may try to apply the sort-merge
strategy and, probably, you will need to explicitly disable the
spark.sql.join.preferSortMergeJoin config, and also at the
programmatic level specify which table should be used as
broadcast as follows [6]:

largedataframe.join (broadcast (smalldataframe))

B. Sort merge join.

 This is the default method if the keys for the join can be
sorted. Of the features, it can be noted that, unlike the
previous method, code generation optimization for operating
is available only for inner join

 Input datasets must be sorted by the columns involved in
the join condition. The connection is carried out in one scan
(pass through) each of the input tables. That is, the same

string is read only once, which gives an advantage over
joining with nested loops.

C. BroadcastNestedLoopJoin и CartesianProduct

 There are situations when it is impossible to directly
compare two sets of data by key or there are no keys, then
the join strategy is selected based on the size of the tables, or
CartesianProduct.

D. Shuffle hash join.

 If the keys cannot be sorted, or the default sort-merge
join selection setting is disabled, Catalyst tries to use a
shuffle hash join.

 In addition to checking for settings, it is also checked that
Spark has enough memory to build a local hash map for one
partition (the total number of partitions is set by the
spark.sql.shuffle.partitions setting)[7].

V. ALGORITHM FOR ACCELERATING JOIN OPERATION

 In this section of the article, we will propose an algorithm
of the join operation for distributed data warehouses, which
increases the processing speed.

 The proposed algorithm assumes the use of data
partitioning before merging. To work with partitions, the
mapPartitions () or mapPartitionsWithIndex () functions are
used, which converts each partition of the source dataset into
several result elements (possibly none). Specific partitioning
rules can be set by creating your customPartitioner class. It is
important not to forget that the size of the partitions should
be approximately the same to avoid the problem of data
skew[8].

 Then, in the process of processing RDD2, you can do
repartition using the same algorithm as in RDD1
(customPartitioner), and then inside the

2021 International Seminar on Electron Devices Design and Production (SED)

Fig. 8. Comparison of the calculation execution time relative to the

amount of input data for the algorithm proposed in work (solid line)

and in standard Spark SQL (dashed line)

mapPartitionsWithIndex () function, refer to the index to a
specific file of the first set and load it into memory directly
using the map data structure. Mutable Maps are implemented
as hash-tables, with m(...) lookups and m(...) = ... updates
being efficient O(1) operations.

The key advantage that this approach provides is the
complete absence of the need to redistribute the data that lies
on the nodes to create an RDD since the second RDD is not
created at all, which means there is no need to physically
redistribute all the data to the machines where the
calculations will take place.

val data = RDD2.partitionBy(customPartitioner)

val res = data.mapPartitionsWithIndex((index, partition) = {

val conf = confBroadcast.value.value

val partitionRDD1 = readFromHDFS(conf, path + index)

val partitionData = partitionRDD1.map {

case Array(k, v) => k -> v.toLong;

case _ => “” -> “”}

}.toMap

val newPartition = partition.map(

 record => {(record , partitionData(record._1))})

new Partition

})

The main feature of this approach is that each performer

will be able to independently load data into the RAM from
any other machine in the cluster, without the participation of
the driver machine, which is a kind of "bottleneck". Also, the
block of data that is needed at the moment for this particular
performer for those partitions on which he is currently
performing calculations will be loaded, which allows a part
of the data set to be loaded into memory promptly, and not
entirely. In a sense, it is an imitation of a "merge join"
behavior, but in our case, there is no need to sort the rows,
which also gives a serious gain in execution speed. And the
great thing is that this approach ensures that there are no
cache misses, which greatly affects the operation's speed.

VI. EXPERIMENTAL RESULTS

Experimental calculations were performed on text data

compressed with the GZIP algorithm. Several tests of the
new merge approach have been performed and compared to
the standard sort-merge join used in Spark SQL [9] (Figure
8).

To carry out the calculations, 128 performers with 6
cores and 16Gb of memory for performers and 8G for the

driver were involved.

The measurements were carried out by standard
spark.time() over the volumes from 100 GB to 7Tb of text
unstructured data. Each measurement was performed 5
times, and the execution time was averaged.

VII. CONCLUSION

Thus, the results of the experiments showed that the
algorithm works more efficiently, the larger the input data. It
can be seen that for 2Tb data the join operation was
performed ~37% faster than the proposed algorithm in Spark
SQL, for data of size 7Tb it was already ~47%. Today, Spark
is the most popular and shows a high query execution speed
compared to other products for distributed computing,
therefore, such acceleration can be considered significant.

 Many tasks have yet to be solved and implemented
using this algorithm. For example, we have now considered
only one type of join operation - left (right) join. In the
future, it is necessary to implement internal join. Also, the
problem of data skew is not solved, it is necessary to
implement automatic skew detection and the creation of
additional keys. Nevertheless, this algorithm can be useful in
many computational tasks, since it is quite stable and shows
a high execution speed.

ACKNOWLEDGMENT

The author would like to thank the Basic Research
Program of the National Research University Higher School
of Economics for their support.

REFERENCES

1. K. Shim. MapReduce algorithms for big data analysis. VLDB
Endowment, 2012, vol. 5, no. 12, pp. 2016–2017.
doi:10.14778/2367502.2367563.

2. J. Dean and S. Ghemawat. Mapreduce: simplified data processing
on large clusters. Communications of the ACM, 2008, vol. 51, no. 1, pp.
107–113. doi:10.1145/1327452.1327492.

3. J. Dittrich, J. Quian´e-Ruiz, A. Jindal, Y. Kargin, V. Setty, and
J. Schad. Hadoop++: Making a yellow elephant run like a cheetah (without
it even noticing). PVLDB, 2010, vol. 3, no. 1-2, pp. 515-529. doi:
10.14778/1920841.1920908.

4. Holden Karau, Rachel Warren. High Performance Spark: Best
Practices for Scaling and Optimizing Apache Spark, O’Reilly, 2017, p. 10.

5. Nicolas Bruno, YongChul Kwon, Mingchuan Wu. Advanced Join
Strategies for Large-Scale Distributed Computation // Proceedings of the
VLDB EndowmentAugust, 2014.

6. R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and I.
Stoica. Shark: SQL and rich analytics at scale. [In Proc. of the “2013 ACM
SIGMOD International Conference on Management of Data”]. New York,
2013. doi:10.1145/2463676.2465288.

7. J. Dittrich, J. Quian´e-Ruiz, A. Jindal, Y. Kargin, V. Setty, and J.
Schad. Hadoop++: Making a yellow elephant run like a cheetah (without it
even noticing). PVLDB, 2010, vol. 3, no. 1-2, pp. 515-529. doi:
10.14778/1920841.1920908.

8. Y. C. Kwon, M. Balazinska, B. Howe, and J. Rolia. A study of skew
in mapreduce applications. [In Proc. of “Open Cirrus Summit”]. Moscow,
2011.

9. Holden Karau, Rachel Warren. High Performance Spark: Best

Practices for Scaling and Optimizing Apache Spark, O’Reilly, 2017, p. 10.

