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Fig. 1. MapReduce Computational model 
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Abstract— This article discusses the features of distributed 

computing in systems based on MapReduce, analyzes join 

strategies in Apache Spark, gives basic recommendations for 

optimizing join operation, and proposes an algorithm of the 

join operation for distributed data warehouses, which 

increases the processing speed. Experimental data represents 

that the method becomes more effective when the volume of 

initial data increases. So, for 2 TB data, the join operation was 

performed ~ 37% faster, for 7 TB data already by ~ 47%. 
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I. INTRODUCTION 

The need for a new engine and programming model for 
data analysis has arisen due to the trend in computer 
programming that is common across technology industries 
and changes in the underlying hardware and computer 
applications. For a long time, the speed of computation has 
increased due to the increase in processor performance: 
every year new processors were able to perform more 
operations per second than before. As a result, applications 
became faster without the need for code changes. This trend 
has created a large and resilient ecosystem of applications 
running on only one processor, which has spurred the 
development of more powerful processors necessary to 
maintain scalability and data growth over time. This trend 
towards hardware expansion ended around 2005: hardware 
designers faced severe heat dissipation constraints, so they 
had to abandon the performance acceleration of one 
processor and switch to the promising direction of 
parallelizing central processor cores operating at the same 
speed. This meant for software developers that to make 
applications run faster, it was necessary to modify from the 
code, add parallelism, which laid the foundation for new 
programming models, such as, for example, Apache Spark. 
Another important factor in the development of such 
technologies is the constant decline in the cost of storage and 
data collection, which did not slow down along with the 
decrease in the growth of processor performance. Every 14 
months, the cost of storing 1TB of data is reduced by almost 
2 times, thus allowing organizations of all sizes to create 
analytical systems built on large data warehouses.  

II. MAPREDUCE TECHNOLOGY 

A. The concept of MapReduce 

MapReduce is a distributed model that was created for 
parallel computing and is used in big data technologies. The 
Mappreduce technology allows computations on very large 
datasets of several petabytes and works in computer clusters 
of hundreds of nodes. This technology was first introduced 
by Google. [1].  

MapReduce can rightfully be called the main Big Data 
technology because it is initially focused on parallel 
computing in distributed clusters. The MapReduce 

technology is based on the principle of dividing information 
into many parts, these parts are distributed between 
individual nodes in a cluster, which allows parallel data 
processing. Development of MapReduce applications is quite 
simple to implement, since programs are automatically 
distributed among the cluster nodes. The executive system 
takes care of the implementation details. It is responsible for 
the separation of input data and exchange between 
computational nodes, distributes tasks between them, and in 
addition, automatic fault handling is supported. Thanks to 
this, programmers can easily and efficiently use the resources 
of distributed Big Data systems. MapRedutse technology is 
extremely universal and can be applied in completely 
different areas: from indexing web pages, calculating the 
amount of content on different hosts, reversing the graph of 
web links and building inverted indexes or implementing 
counters for requests to a web host to complex analytical 
tasks using machine learning technologies that require 
processing huge amounts of data, such as machine 
translation or clustering documents. Also, MapReduce is 
adapted for multiprocessor systems, voluntary computing, 
dynamic cloud and mobile environments [2]. 

B. Computational model 

The concept of MapReduce is that the process of 
processing data stored in one or more files is divided into 
two phases: map and reduce [3]. The result is key-value 
pairs. Each phase has a key value as input and output. 
Intermediate results obtained after the completion of the map 
stage are moved between the nodes of the cluster. This 
movement is called shuffle. After that, the reduction phase 
begins. These steps can be repeated several times. 

 In more detail, the 5 stages of data processing are 
presented in Figure 1. 

• Map - preprocessing input data as a large list of 
values. At the same time, the main node is 
responsible for dividing the key-value list into several 
parts and transferring it to the worker nodes for 
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Fig. 2. Apache Spark architecture[4] 

 

Fig. 3. Types of data exchange topologies (initial partitioning, 

redistribution, full merge, partial redistribution and partial merge) 

[5] 

execution. The task of each worker node is to perform 
a transformation operation to its local data and save 
the obtained result. 

• Shuffle, when worker nodes redistribute data based 
on the keys previously generated by the Map function 
so that all the data for one key resides on one worker 
node; 

• Reduce is an operation for reducing the list of key-
values obtained as a result of the Map operation, 
which is performed in parallel on each worker node 
for each group, combined by a key. The result of the 
operation is collected by the main node. The master 
node receives intermediate responses from worker 
nodes and transmits them to free nodes for the next 
step.  

 These steps are repeated a number of times, depending on 
the problem, and the final result is a solution to the original 
problem. 

 The procedure of data transformation of (key, value) 
pairs is shown as follows: 

 Map: (k1, v1) → List (k2, v2) 

 Reduce: (k2, List (v2)) → List (k3, v3) 

III. APACHE SPARK 

Apache Spark is a complete computing system that 
provides a set of libraries for performing data processing in 
distributed cluster systems. Currently, among the open 
source tools used to solve such problems, spark is recognized 
as the most actively developing. The pace of development, 
high efficiency and ease of use makes this tool very useful 
for any specialist interested in solving computational 
problems in big data.  

Development can be done in several widely used 
programming languages such as Python, Java, Scala, and R. 
Tasks can be run from a laptop or compute cluster of 
thousands of nodes. Spark can solve a wide range of tasks 
from SKL and machine learning to streaming data 
processing. This makes Apache Spark a convenient start-up 
system, flowing into big data processing on an incredibly 

huge scale. 

A Spark application consists of a single control process, 
called a driver, and a set of executing processes called 
executors, that are dispersed across the cluster nodes [4]. 

The driver provides high-level control of the workflow. 
Executors ensure that work is done in the form of tasks, as 
well as storing any data that the user wants to cache. The 
driver and executors work throughout the entire program 

execution process, while resources for the executors are 
dynamically allocated. Each performer is capable of 
performing several tasks in parallel. The deployment of these 
processes to the cluster is handled by the cluster manager 
(YARN, Mesos, or Spark Standalone), but the driver and 
executors are present in every Spark application. 

IV. JOIN STRATEGIES 

Traditionally, joins are classified according to semantic 
characteristics into cross join, inner join, outer join and semi-
join. In this paper, we consider the possibility of speeding up 
a particular case of a join operation: a left outer join , that is, 
all values from the left set are included in the final selection, 
regardless of whether there are key matches in the right set. 
If a matching identifier is found in the corresponding table, it 
is returned or a null value is added. 

The following algorithms are distinguished according to 
the different ways of implementing the join: joins with 
nested loops, joins based on sorting, and joins based on the 
hash. Also, some tools allow the use of secondary data 
structures such as secondary indexes, join indexes, bitmap 
indexes, Bloom filters. Such secondary structures are created 
to further improve the basic join algorithms. Although these 
well-known traditional methods of data processing used in 
relational DBMSs are adapting to the new conditions of 
distributed computing, such approaches are rarely applied. 
Approaches with building additional indexes are often 
ineffective since it can take too much time to rebuild the 
indexes during the computation process, which completely 
covers the resulting speedup on the join. 

In a distributed environment, the additional concept of 
connection graph topology is introduced. Graph topology 
reflects how data partitions will be processed in a distributed 
system and this depends on several of the following factors: 
[5]: 

• partitioning scheme that characterizes data partitioning 
in the system into partitions. The partitioning scheme 
consists of a partitioning function (for example, hash, range, 
or arbitrary partitioning), a key, and a partition counter. 

• data exchange operators that change the partitioning 
scheme of the dataset and include initial partitioning, 
redistribution, full merge, partial redistribution, and partial 
merge (Figure 3). 

• merge schemes that modify data exchange statements to 
provide certain additional properties within a section (for 
example, order). 

 • partitioning policies, which determine whether 
partitions can be duplicated across multiple worker nodes, 
and include duplicate distribution and non-duplication 
distribution. 
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Fig. 4. The scheme of ideal partitioning, in which the data is evenly 

divided into partitions and each partition (P) is entirely located on 

one executor (Executor) 

 

Fig. 5. Broadcast join 
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Fig. 7. Shuffle Hash Join 
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Fig. 6. Sort merge join 
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The basic idea of partitioning is quite simple - instead of 
storing data in one piece, we will divide it into several 
independent parts. All parts retain the primary key from the 
original part, so any data can be accessed quickly enough. 

In order to choose the correct strategy for combining 
data, Spark needs to perform the stage of building a physical 
plan for the query execution. 

A. Broadcast join. 

 The most effective way to combine data is when one side 
of the combination is small. This criterion can be influenced 
by changing the spark.sql.autoBroadcastJoinThreshold 
parameter in SQLConf. In this case, the small side is copied 
to all executive nodes, where it becomes possible to connect 
to the main table locally.  

 Keep in mind that there is a maximum size limit for a 
smaller table when it is still possible to use a broadcast join. 
Spark recently increased this size from 2GB to 8GB. In 
addition to the size of the data, keep in mind that in the case 
of an outer join, the spark may try to apply the sort-merge 
strategy and, probably, you will need to explicitly disable the 
spark.sql.join.preferSortMergeJoin config, and also at the 
programmatic level specify which table should be used as 
broadcast as follows [6]:  

largedataframe.join (broadcast (smalldataframe))  

B. Sort merge join. 

 This is the default method if the keys for the join can be 
sorted. Of the features, it can be noted that, unlike the 
previous method, code generation optimization for operating 
is available only for inner join 

 Input datasets must be sorted by the columns involved in 
the join condition. The connection is carried out in one scan 
(pass through) each of the input tables. That is, the same 

string is read only once, which gives an advantage over 
joining with nested loops. 

 

C. BroadcastNestedLoopJoin и CartesianProduct 

 There are situations when it is impossible to directly 
compare two sets of data by key or there are no keys, then 
the join strategy is selected based on the size of the tables, or 
CartesianProduct. 

D. Shuffle hash join. 

 If the keys cannot be sorted, or the default sort-merge 
join selection setting is disabled, Catalyst tries to use a 
shuffle hash join. 

 In addition to checking for settings, it is also checked that 
Spark has enough memory to build a local hash map for one 
partition (the total number of partitions is set by the 
spark.sql.shuffle.partitions setting)[7]. 

 

V. ALGORITHM FOR ACCELERATING JOIN OPERATION 

 In this section of the article, we will propose an algorithm 
of the join operation for distributed data warehouses, which 
increases the processing speed. 

 The proposed algorithm assumes the use of data 
partitioning before merging. To work with partitions, the 
mapPartitions () or mapPartitionsWithIndex () functions are 
used, which converts each partition of the source dataset into 
several result elements (possibly none). Specific partitioning 
rules can be set by creating your customPartitioner class. It is 
important not to forget that the size of the partitions should 
be approximately the same to avoid the problem of data 
skew[8].  

 Then, in the process of processing RDD2, you can do 
repartition using the same algorithm as in RDD1 
(customPartitioner), and then inside the 
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Fig. 8. Comparison of the calculation execution time relative to the 

amount of input data for the algorithm proposed in work (solid line) 

and in standard Spark SQL (dashed line) 

mapPartitionsWithIndex () function, refer to the index to a 
specific file of the first set and load it into memory directly 
using the map data structure. Mutable Maps are implemented 
as hash-tables, with m(...) lookups and m(...) = ... updates 
being efficient O(1) operations. 

The key advantage that this approach provides is the 
complete absence of the need to redistribute the data that lies 
on the nodes to create an RDD since the second RDD is not 
created at all, which means there is no need to physically 
redistribute all the data to the machines where the 
calculations will take place. 

val data = RDD2.partitionBy(customPartitioner) 

val res = data.mapPartitionsWithIndex((index, partition) = { 

val conf = confBroadcast.value.value 

val partitionRDD1 = readFromHDFS(conf, path + index) 

val partitionData = partitionRDD1.map { 

case Array(k, v) => k -> v.toLong; 

case _ => “” -> “”} 

}.toMap 

 

val newPartition = partition.map( 

 record => {(record , partitionData(record._1))}) 

new Partition 

}) 

 
The main feature of this approach is that each performer 

will be able to independently load data into the RAM from 
any other machine in the cluster, without the participation of 
the driver machine, which is a kind of "bottleneck". Also, the 
block of data that is needed at the moment for this particular 
performer for those partitions on which he is currently 
performing calculations will be loaded, which allows a part 
of the data set to be loaded into memory promptly, and not 
entirely. In a sense, it is an imitation of a "merge join" 
behavior, but in our case, there is no need to sort the rows, 
which also gives a serious gain in execution speed. And the 
great thing is that this approach ensures that there are no 
cache misses, which greatly affects the operation's speed. 

VI. EXPERIMENTAL RESULTS 

 
Experimental calculations were performed on text data 

compressed with the GZIP algorithm. Several tests of the 
new merge approach have been performed and compared to 
the standard sort-merge join used in Spark SQL [9] (Figure 
8). 

To carry out the calculations, 128 performers with 6 
cores and 16Gb of memory for performers and 8G for the 

driver were involved. 

The measurements were carried out by standard 
spark.time() over the volumes from 100 GB to 7Tb of text 
unstructured data. Each measurement was performed 5 
times, and the execution time was averaged. 

VII. CONCLUSION 

Thus, the results of the experiments showed that the 
algorithm works more efficiently, the larger the input data. It 
can be seen that for 2Tb data the join operation was 
performed ~37% faster than the proposed algorithm in Spark 
SQL, for data of size 7Tb it was already ~47%. Today, Spark 
is the most popular and shows a high query execution speed 
compared to other products for distributed computing, 
therefore, such acceleration can be considered significant. 

           Many tasks have yet to be solved and implemented 
using this algorithm. For example, we have now considered 
only one type of join operation - left (right) join. In the 
future, it is necessary to implement internal join. Also, the 
problem of data skew is not solved, it is necessary to 
implement automatic skew detection and the creation of 
additional keys. Nevertheless, this algorithm can be useful in 
many computational tasks, since it is quite stable and shows 
a high execution speed. 
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