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Abstract—A two-stage calibration of inertial micro-electro-
mechanical (MEMS) sensors is considered. In this paper, such 
sensors are gyroscopes and accelerometers, oriented along 
three orthogonal axes and placed in a single inertial 
measurement module. The first stage of calibration is carried 
out in the factory at the bench without linear overloads. The 
second stage is implemented in a dynamic mode in a mobile 
laboratory that provides linear overloads. At this stage, the 
drifts of the sensor signals are estimated, as well as the skews of 
their measuring axes, which remained after the factory 
calibration. In addition, structural and parametric 
identification of dynamic models of sensor signal drifts is 
performed. Such models are used to compensate for the errors 
of MEMS sensors in autonomous inertial navigation modes, 
including the loss of satellite signals. The errors of MEMS 
sensors in motion are estimated using information from the 
reference inertial satellite navigation system and the extended 
Kalman filter. The results of full-scale experiments are 
analyzed.    

Keywords—inertial navigation system, global navigation 
satellite system, micro-electro-mechanical sensors, calibration, 
extended Kalman filter. 

I. INTRODUCTION   

The current state of onboard equipment of mobile objects 
is characterized by the use of integrated inertial satellite 
navigation systems (ISNS) [1]. In such ISNS global 
navigation satellite systems (GNSS) provide high-precision 
positioning, and inertial ones - the determination of the 
angular orientation and redundancy of the GNSS in case of 
failures. When limiting the size and mass of the ISNS, 
inertial navigation systems (INS) should be built on the basis 
of micro-electro-mechanical (MEMS) measuring modules. A 
typical MEMS module includes [2]: a triad of orthogonally 
placed gyros and a triad of orthogonally placed 
accelerometers. INS-MEMS built on the basis of the 
ADIS16488 measuring module developed by the Analog 
Devices Co [3] is shown in Fig. 1. A digital signal processor 
(DSP, see Fig. 1) based on the “OlinuXino A20 micro” 
computing board with an adapter intended for matching the 
SPI and UART interfaces.  

It should be noted that inertial MEMS sensors have a 
wide insensitivity zone and low accuracy. Taking account of 
the above-mentioned features, INS-MEMSs must rely on the 
GNSS which forms part of an ISNS. Moreover, the INS-
MEMSs cannot execute the initial alignment from attitude 
angles in the autonomous mode. Because of this, the initial 
alignment of INS-MEMS is realized from information 
obtained from the GNSS or reference INS. 

Taking into account the prospects of using small-sized 
ISNS, as well as the capabilities of modern embedded 

computers, it seems expedient to develop analytical 
approaches to improving the accuracy of MEMS sensors. At 
the same time, when operating ISNS, the task is not only to 
estimate the deterministic errors of MEMS sensors, but also 
to identify dynamic models of their change. 

 

 

 

 

Such models make it possible to maintain the required 
accuracy characteristics of the ISNS in an autonomous 
inertial mode when GNSS signals are lost. It should be noted 
that during bench calibration, it is not possible to simulate 
the dynamic modes of ISNS operation. 

Traditionally [4] - [7] dynamic calibration of MEMS 
sensors in motion is performed using position and velocity 
data from GNSS. However, in this case, the errors of the 
gyros have poor observability. Therefore, it is proposed to 
use, in addition to velocity and positional parameters, 
angular information from the reference more accurate ISNS.  

The purpose of this paper is to study the calibration 
procedures of MEMS sensors in motion along a given route 
using information from the reference ISNS. 

The quality of calibration of MEMS sensors is estimated 
in post-processing of data recorded during a test trip along a 
given route. 

II. FACTORY CALIBRATION OF MEMS SENSORS    

At bench calibration of a MEMS sensors the vector of 
errors, as a rule, includes [8], [9] systematic drifts of signals 
of sensitive elements (SE): gyroscopes and accelerometers, 
as well as angular deviations of the SE axes from an ideal 
orthogonal trihedron. For example, for a gyroscopic module, 
such a vector will have the form 
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Fig. 1. INS-MEMS modules 
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T
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 is the vector of systematic angular drifts of gyros; 

T

δ
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x =                                   (3) 

is the vector of gyro angular skews; ox, oy, oz are the axes of 
the inertial measurement unit (IMU). 

The calibration procedure is associated with the 
formation of observations, when the bench rotates 
sequentially around the axes ox, oy, oz. For example, when 
rotating around the ox axis of the IMU, the observation will 
have the form 
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Observation (4) can be associated with the following model, 
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=  is the vector of errors in the 

formation of reference angular velocities of rotation on the 
bench. 

During factory calibration, as a rule, bench errors are not 
taken into account. Then the estimate of the error vector of 

the inertial sensors x̂  can be found using the least squares 

method by solving the following equation  
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It is possible to increase the accuracy of estimating the 
errors of inertial sensors by means of sequential modification 
of the extended Kalman filter (EKF) [10]. In this case, the 

unreliable operation of inverting the 
xyz

H  matrix in equation 

(5) is excluded, and random errors of the rotary bench are 
also taken into account. 

During bench calibration, it is not possible to perform the 
following procedures: 

• estimation of the dynamic errors of the IMU arising 
from the influence of linear overloads; 

• estimation of the dynamic errors of the IMU arising 
from the complex effect of linear and angular jerks; 

• identification of dynamic models of sensor errors; 
• quality control of the performed calibrations. 

Before testing in motion, the factory calibration 
coefficients are stored in the INS-MEMS processor module.  

 

III. STRAPDOWN INERTIAL SATELLITE NAVIGATION  

SYSTEM AS A REFERENCE OBJECT FOR CALIBRATING MEMS 

SENSORS    

Calibration of INS-MEMS sensors in motion can be 
performed by interacting with the reference ISNS. To do this, 
signals from inertial sensors of both systems, as well as 
GNSS signals, must be synchronously recorded. In post-
processing, according to the registered data, the INS-MEMS 
solves the problem of inertial navigation, and in the reference 
ISNS, the problem of inertial-satellite navigation. In the 
work under consideration, the SINS-500 system [11], shown 
in Fig. 2, was used as a reference ISNS. The IMU of the 
SINS-500 system is based on fiber-optic gyros and quartz 
accelerometers. Fiber-optic gyros (FOG) were developed by 
the “Optolink” RPC (Zelenograd). The presence of the built-
in flash-memory allows to develop the software and 
mathematical support according to the registered data.  

In the considered INS systems, the modes of initial 
alignment and navigation are implemented. In the initial 
alignment mode, the initial conditions for reckoning the 
movement parameters are determined. The geodetic 
coordinates of the point of the initial alignment are assumed 
to be known. In ISNS, the approximate values of the initial 
orientation angles are determined by the analytical 
gyrocompassing method (AGC) [9]. This method is 
implemented using the signals of the INS sensors: gyros and 
accelerometers, which measure the projections of the 
angular velocity vector of the Earth's rotation and the 
acceleration of gravity on the IMU axes. 

 

 

 

 

The refinement of the orientation angles after the AGC 
mode, as well as the estimation of the instrumental drifts of 
the sensors, can be performed in the mode of fine initial 
alignment. This mode is implemented using observations of 
geophysical invariants that are both computed from INS 
information and “a priori” known. Typical are the invariants 
associated with the unmoved base of the SINS, namely:  
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Fig. 2. SINS-500 strapdown inertial satellite navigation system.  
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where PIA stands for the position of the initial alignment; 
Т

][
zyx

= 
 is the vector of FOG output signals;   is 

the Earth's angular velocity; 1−−= iii ttt  is an observation 

step; 
0

C  is the direction cosine matrix that characterizes the 

angular position of the IMU - fixed frame with respect to the 

inertial frame; λ,  are the geodetic latitude and longitude 

of INS-FOG, which is the kernel of the ISNS;  
Т

ζηξ
][ VVVV =

 
is the vector of the relative velocity of IMU 

motion, given by its components along the axes of the semi-

wander azimuth reference frame ξηζo  [11].  

The INS-MEMS initial alignment is carried out 
according to the information of the INS-FOG.  

Inertial-satellite navigation mode is implemented by 
processing the following observations using EKF 
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where 
1

C  is the direction cosine matrix that characterizes 

the angular position of the reference frame o   with 

respect to the geodetic frame оENH; h is the elevation with 
respect to the Earth ellipsoid. 

In the quaternion implementation of the reckoning 
equations [11], the base vector of INS state includes errors 
in the reckoning of components of the relative velocity 
vector; errors in the reckoning of elements both of 
navigation and of attitude parameters; angular drifts of 
gyros, and biases of accelerometer signals.  

IV. IN-MOTION CALIBRATION OF MEMS SENSORS    

When calibrating inertial sensors in motion, skews of the 
measuring axes of gyroscopes and accelerometers are 
additionally included in the INS-MEMS base state vector. 
Noise models of inertial sensors are formed so [8], [9] that 
their structure is mapped to the general error equation of 
INS 

              )(ξ)()()()(/ ttGtxtAtxdtdx +==  ,         (11) 

where 
)()(

INS

/)]([)(
tYtY

YtYFtA
=

=  is the matrix of 

coefficients that characterize the dynamics of variation of 

INS errors; )(ξ t  is the vector of disturbances that affect the 

INS; G(t) is the matrix of disturbance intensities; where Y(t) 

is the motion parameter vector; )(
INS

tY  is the vector of 

parameters formed by the INS by solving the basic 
equations of inertial navigation. In general, these equations 
are nonlinear [8], [9] namely: 

                   )(ξ)()]([)(
INSINS

ttGtYFtY += ;                (12) 

)()()(
INS

tYtYtx −=  is the vector of INS errors.  

For the INS under consideration, equations (12) are 
presented in an expanded form in [2]. 

In calibration mode, the vector of INS-MEMS errors is 
estimated with the EKF by processing the following 
observations 
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where ψ  is the true heading angle,   is the pitch angle, and 

 γ  is the roll angle of the IMU. 

When implementing observation (15), it is assumed that 
the mutual orientation of the inertial measurement modules 
IMU-MEMS and IMU-ISNS is known. After calibration, 
the angular misalignment values are stored in the INS-
MEMS processor module. In the navigation mode, as a rule, 
only the basic INS-MEMS error vector is realized. The 
systematic angular drifts of the gyros and the biases of the 
accelerometer signals included in this vector have an 
autocorrelated character. In general, such a process can be 
described by the following equation 

                                )(ξ)(μ)(μ ttt
s

+= ,               (16) 

where )(μ t
s

  is a systematic drift; )(ξ t is a purely random 

error with a Gaussian distribution, i.e. )σ,0()(ξ
2
ξNt  ;                           

2

ξ
σ  is the variance of the perturbation. The perturbation 

)(ξ t  can be considered as an input signal for the error 

generation model.  

In the process of calibration, it becomes necessary to 
identify the parameters of the models of autocorrelated 
sensor errors. 

Equation (16) can be associated with the exponential 
correlation function 
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where 
μ

T  is the correlation time of the inertial sensor error;  

E […] is the operator of mathematical expectation; a=μ  is 

the index indicating the accelerometer; g=μ  is the index 

indicating the gyroscope. 

The spectral density of process (17) has the form 
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where 

μ

μ

1
α

T
= ; 1−=j ; ω  is the frequency. 
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Spectral densities of the input )ω(
ξ

S  and output 

)ω(
Δμ

S signals in the inertial sensor model are related 

with module of frequency transfer function by the following 
ratio [12]: 

                   )ω()ω()ω( ξ
2

Δμ SjWS = .               (19) 

For 1σ
2

ξ
=  the following relation is true 
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Taking into account relation (20), the transfer function in 
the Laplace form will have the following expression 

      )(ξ/)(μ)α/(ασ2)(
μμ

2
μ
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Hence, the equations describing the dynamics of errors 
of inertial sensors in the time domain will have the form 

               
μμμ

α2σ)(ξ)(Δμα)(μ ttt +−= .      (22) 

Equation (22) is easily mapped to the general model of 
INS errors (11) 
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α
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From expression (17) it follows that 
2

μμ
σ)0( =K . 

Therefore, the identification problem can be reduced to 

determining the parameter μα  in the model (17), which 

minimizes the quadratic function  
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where 
)(μ 

ˆ
j

K  is the statistical correlation function, 

determined by the estimates 
j

x̂  recorded during the 

operation of the INS, namely: 
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N is the number of retrospective samples of sensor signals; 

tj
j

=τ ; 
1−

−=
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i

t  are discrete moments in 

time. 

Differentiating function (24) with respect to 
μ

α  and 

equating the derivative to zero, we obtain 
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Considering that for sensors 1α0
μ
  and the second 

factor in equation (26) does not affect the solution, we can 
write 
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From equation (27) with j = 0, the estimate of the 
variance of the error is determined 

                                      μ(0)
2
μ ˆσ K= .                                (28) 

Then the normalized correlation functions will have the 
form 
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For 0ˆ
)(μ


j
K , equation (27) can be associated with an 

equivalent expression written in terms of the natural 
logarithm function, namely:   
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Hence, the estimate 
μ

α̂  of the parameter 
μ

α  will have 

the form  
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The change in the sign of the experimental correlation 
function (25) shows the inconsistency of the model (17) 
with the real estimates of the errors of inertial sensors. This 
discrepancy can be eliminated based on the following 
procedures for adaptive identification of model parameters: 

• identification based on a limited sample of estimates, at 

which 0ˆ
)(μ


j
K ; 

• correction of the structure of the correlation function 
model, taking into account the presence of estimates for 

which 0ˆ
)(μ


j
K . 

Correction of the structure of the correlation function 
model can be performed on the basis of a combination of 
transcendental functions, in particular, using the 
exponential-cosine function 

                              tetK
t

μ

μ
α

2

μμ
βcosσ)(
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= .               (32) 

It can be shown that the correlation function (32) 
corresponds to the following spectral density: 
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T  is the correlation 

time. 

Taking into account expression (19), spectral density 
(33) can be associated with a shaping filter with a transfer 
function 
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Expression (34) corresponds to the following system of 
equations in the time domain 
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These equations can be written in vector-matrix form 
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In equations (35) and (36), parameter )(μ~ t  is an 

auxiliary variable, and )(μ t  is the total sensor error. In 

equations (35) and (36), the identified parameters μα and 

μβ are determined by minimizing the quadratic function 
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In the above problem, the parameters μβ  and 
2
μσ  are  

determined by the experimental correlation function 
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exactly, namely: 
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τ is the value of the time interval for 
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=K . 

The following approaches to solving problem (37) are 

possible taking into account estimates (38):  
• in the general case, through the decomposition of 

transcendental functions in power series; 

• through the function of the natural logarithm for the 

sample of the estimates, for which 0ˆ
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
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K , namely: 
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From this equation, an estimate of the parameter 
μ

α̂  is 

obtained 
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After identification, parameters 
μ

α̂ , 
μ

β̂ , and 
2

μ
σ̂  are 

included in equations (35) and (36). 

In Fig. 3, typical results of the identification of 
normalized correlation functions of the angular drift of one 
of the gyros are shown, namely: for the function taken into  

 

 

 

account in the model, mr ; for the function computed from 

experimental data, er ; for the function obtained either by the 

exponential approximation, 1ar , or by the exponential 

cosine approximation, 2ar . 

V. ANALYSIS OF THE RESULTS OF STUDIES 

Experiments have been carried out under terrestrial 
conditions when the necessary equipment was housed in a 
mobile laboratory. The timing diagram of operation of the 
SINS-500 and INS-MEMS systems included the following 
stages: initial alignment by the AGC method (t = 0÷270sec); 
fine initial alignment using invariants and EKF (t = 
270÷740sec), and a navigation mode (t >740sec).   

In the structure of the ISNS, the basic SINS-500 system 
operates in the indicator mode [13]. In this mode, error 
estimates are compensated in the output signals of the SINS. 
The use of smoothed data from the corrected SINS allows 
continuous estimation of MEMS sensor errors during the 
calibration process. In addition, in the SINS-500 system, 
monitoring and protection of the information integrity of 
inertial satellite observations is carried out [14]. 

Fig. 4 shows the circular positional error S  of the 

basic SINS-500 system  in inertial satellite mode, where  

mr  

1ar  

2ar  

er
 

 time, sec 

Fig. 3. Results of identification of normalized correlation 
functions. 

r̂  
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R)(
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R is the value of the radius vector of ISNS position.  

The value of parameter (39) is taken as a quality 
criterion for the calibration, which is performed iteratively 
using the recorded data. 

    meters ,S  

 

 

 

 

Fig. 5 shows the circular positional error of the INS-
MEMS in the inertial mode after pre-calibration under 
stationary conditions.  

meters ,S  

 

 

 

 

Fig. 6 shows the INS-MEMS circular positional error in 
inertial mode after pre-calibration under stationary 
conditions and in motion. 

meters ,S  

 

 

 

 

It can be seen that after calibration in the dynamic mode, 
the circular positional error of the INS-MEMS decreased by 
an order of magnitude. It should be noted that the results 
were obtained without taking into account the thermal drifts 
of the MEMS sensors. 

CONCLUSIONS 

The conducted studies have shown the feasibility of 
performing a combined ground-onboard calibration of 
inertial measuring modules based on MEMS sensors. The 
proposed technology for such a calibration is based on the 
use of a reference inertial-satellite navigation system and the 
mathematical apparatus of the EKF. In addition, in the 
process of dynamic calibration, the structural and parametric 
identification of the error models of MEMS sensors, which 
are necessary for integration with the GNSS, can also be 
performed. In practice, the information from the reference 
ISNS can be used to calibrate several measurement modules 
based on MEMS sensors.  
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Fig. 4. Circular position error of the basic SINS-500 system in 
inertial satellite mode. 
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Fig. 6. Circular position error of the INS-MEMS in inertial mode 
after pre-calibration under stationary conditions and in motion. 
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Fig. 5. Circular position error of the INS-MEMS in inertial mode 
after pre-calibration under stationary conditions. 

 

 


