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Abstract—The paper proposes a complex method for 

determining the technical condition of electronic devices (TC of 

ED) based on building a heterogeneous cognitive model 

(HCM), a simulation network model and formation of an 

artificial neural network (ANN). The well-proven and 

established in modeling discrete processes Petri net acts here as 

a simulation network model. The novelty of the given method is 

the combination of the HCM and the Petri net to obtain 

additional information about TC of ED and to build on their 

basis the ANN for making diagnostic decisions under 

measuring and expert information. ANN is used to solve the 

classification problem that allows one to identify the state of 

the ED which are characterized by certain parameter values 

and range it to one of the several pairwise non-intersecting 

specified classes. The paper presents a table of flowchart 

conversion into HCM, Petri net, as well as algorithms for 

converting HCM and Petri net into ANN with some 

assumptions. This allows one to avoid the select problem of the 

ANN structure, which is carried out on the basis of the 

operational personnel experience and scores of attempts to 

conduct training. The method proposed is illustrated by the 

example of determining the TC of microcontrollers in control 

systems. 
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I. INTRODUCTION 

The process of diagnosing ED for various purposes is a 
rather complex process and is an important technical task. 
First, solving the problem requires prompt receipt and 
processing of large amounts of various information, as well 
as an expert analysis of this information. Second, the 
problem is complicated by the limited time allotted for 
troubleshooting and determining the TC of ED, which in 
most cases are quite remote from service centers. Third, the 
task is complicated by the need to obtain diagnostic estimates 
when recognizing the type of the TC of ED directly when the 
device is in operation, i.e. in real time. Therefore, the ED 
diagnostics is currently a very urgent task.  

Currently, a sufficient number of methods for ED test 
diagnostics  have been developed. However, they have 
significant drawbacks. Firstly, the ED removing from service 
is required which does not allow using these methods 
directly during the ED operation. Secondly, special 

equipment is needed to generate test signals that are sent to 
the controlled object when it is disconnected from the 
operating mode [1-5]. This is the reason to develop such 
decision support methods for the ED diagnostics that would 
ensure, on the one hand, the maximum completeness of the 
obtained assessment of TC of ED, and on the other hand, the 
conduct of a diagnostic experiment directly during the ED 
operation. 

In this regard, this paper proposes a complex method for 
determining the TC of ED based on the building a 
heterogeneous cognitive model, a simulation network model 
and the formation of the ANN structure on their basis. 

II. ALGORITHM FLOWCHART INTERPRETATION IN HCM  

AND PETRI NET 

The algorithms that implement the decision support 
methods  in the ED diagnostics are normally represented in 
the form of flowcharts. However, the flowchart may have 
many errors and drawbacks (for example, it does not reflect 
the interaction between the parameters that impacts the TC of 
ED, as well as the operational personnel of the process). This 
leads to conflicts in the control system and to the lack of 
further opportunities for the use of mathematical apparatus or 
the modeling the process of determining the TC of ED 
represented by flowcharts.  

In this regard, it is proposed to interpret the flowcharts in 
HCM and Petri net. As HCM make it possible to reflect 
process problems in a simplified form (model); to explore 
through scenarios of emergency situations; to find ways to 
solve them in model situations, and to investigate the 
structure optimality. Petri nets allow one to study not only 
the operability of simulated systems that change over time, 
but also to determine the previous system states, including 
never reached ones (to model processes), and also to visually 
represent the dynamics of changes in TC of ED depending 
on the parameters [6, 7]. Flowchart algorithm interpretation 
in HCM and Petri net is shown in Table 1. 

Table 1 shows that the flowchart is very similar to the 
Petri net. The nodes of the flowchart are replaced with Petri 
net transitions, and the arcs are replaced with positions 
(vertices – with a place in the Petri net) [8, 9]. 

It should be noted that the constructed HCM used in the 
ED diagnostics should have the following properties: 

• No reciprocal links. 
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• HCM should preferably include cycles that are 
involved in the analysis of structural stability and 
perturbation stability by initial value [10]. 

TABLE I.  FLOWCHART ALGORITHM INTERPRETATION 
IN HCM AND PETRI NET 
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Constructed Petri nets should have the following 
properties [6]: 

• Limitation occurs if the number of tags in any 
position of the network cannot exceed the K value. If 
the number of tags increases unlimitedly, then there is 
a danger of unlimited growth of queue lengths. 

• Security is a special case of the limitation, K=1. The 
Petri net is safe if it can’t have more than one tag in 
each of the positions  under no circumstances. 

• Reachability is the ability of the network to move 
from one given state (characterized by the distribution 
of chips) to another one. Here, the dead-end markup 
reachability may also occur – this is the finiteness of 
the structure functioning. Thus, when modeling the 
process of determining the TC of ED, such a property 
must be absent since it prolongs the operation of this 
process without errors and freezes. The problem of 
dealing with deadlocks is becoming more and more 
urgent and complicated at the present time. When 
modeling the process of determining the TC of ED, 
the operational personnel try to analyze possible 
emergency situations using special models and 
methods [10, 11]. 

• Liveness is the ability of triggering any transition in 
this network at the initial markup (functioning of the 
simulated object). The lack of liveness means either 
the redundancy of the parameters that characterize the 
TC of ED when diagnosing it, or indicates that loops, 
deadlocks, and locks may occur. 

III. BUILDING THE ANN BASED ON THE HCM AND PETRI NET  

After modeling the process of determining the TC of ED 
based on the Petri net, it is proposed to solve the 
classification problem, which allows one to recognize the 
TC of ED and range it to one of several pairwise non-
intersecting specified classes. It should be noted that the 
classification task is much more complicated with a large 
number of controlled parameters; a decision about the TC of 
ED is made on the basis of these parameters values. ANNs 
are proposed to be used for solving the classification 
problem as they provide high recognition efficiency. 

To avoid the problem of selecting the ANN structure 
which is carried out on the basis of the experience of the 
operational personnel and many attempts to conduct 
training, it is proposed to perform certain transformations. 

Fig. 1 shows the transformation of HCM to ANN. 

Fig. 1. Transformation of HCM to ANN. 

To build an ANN, it is necessary to reduce the HCM to 
the ANN structure. To do this, the HCM vertices are 
distributed in a hierarchy (levels) in accordance with the 
conditions [12]: 

• The following vertex must not be higher than the 
previous vertex. 
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• Vertices of the same level must not be connected to 
each other. 

• All arcs must follow the same direction. 

• The arc must not be longer than one level, otherwise 
dummy-based vertices are added. 

Here, the vertices v1ꞌ and v2ꞌ are dummy-based and 
highlighted in gray. 

To build ANN based on a Petri net, some authors in  
[13-15] propose to perform transformations using the 
following assumptions: 

• Events and transitions in the Petri net are converted 
into neurons. 

• Arcs between events and transitions in the Petri net 
are transformed into connections in a neural network. 

• Protective conditions at transitions during 
transformation are not transferred to the neural 
network. 

Fig. 2 shows the transformation of the Petri net to ADD. 

Fig. 2. Transformation of the Petri net to ANN. 

In Fig. 2 a), transitions t1 and t2 are transformed into 
neurons (vertices v1ꞌ and v2ꞌ), w – weight representing the 
impact of input places on transitions. 

The considered transitions are necessary for obtaining the 
initial structure of the ADD and its further training. 

IV. EXAMPLE OF MICROCONTROLLER TC  

IN CONTROL SYSTEMS  

To diagnose the microcontroller TC, the HCM for the 
impact of power quality indicators (PQI) on microcontrollers 
has been developed. Fig. 3 presents HCM fragment. 

Here, v1 – frequency deviation; v2 – voltage fall duration; 
v3 – negative-phase-sequence voltage unbalance factor; v4 – 
zero-phase-sequence voltage unbalance factor; v5 – voltage 
unbalance; v6 – flicker value; v7 – n - voltage harmonicity 
ratio; v8 – temporary overvoltage ratio; v9 – С- phase 
voltage; v10 – A-phase voltage; v11 – В-phase voltage; v12 – 
lightning impulse voltage; v13 – voltage deviation in A-, B-, 
C- phases; v14 – voltage variation range; v15 – voltage THD; 
v16 – voltage fluctuations; x17 – voltage nonsinusoidality; 
and diagnostic factors: v18 –climatic conditions; v19 – TC of 
AM serviceability. 

To determine links between parameters (vertices), a 
scale was established to assess the nature and strength of 
links [16]. The structure analysis of the HCM built allows 
the operational personnel to find out the best parameter 
values that characterize the microcontroller TC, to 
determine the impact degree between parameters, and to 
identify the most significant parameters from the parameter 
set. 

To simulate the process of determining the 
microcontroller TC in control systems, the  simulation 
network model built is used, which provides not only 
tracking the current state of microcontrollers and carry out 
various variations of diagnostic measures by simulation, but 
also planning the diagnostic measures. A fragment of the 
simulation network model for determining the 
microcontroller TC is shown in Fig. 4. 

Fig. 3. Heterogeneous cognitive model for the PQI impact on TC of ED. 
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Fig. 4. Fragment of the simulation network model for determining the TC 

of microcontrollers. 

The simulation network model for determining the TC of 
microcontrollers includes: 

• Positions – intermediate states of parameter 
development, factors P = {p0, p1, p2, p3, p4, p5, p6, 
p7, p8, p9, p10, p11}. 

• Transitions – interaction of states 
T = {t1, t2, t3, t4, t5, t6, t7, t8, t9}. 

• Label parameters – time-varying parameters of 
microcontrollers. 

The Petri net shown in Fig. 4 has the boundedness 
property, since it follows from the minimum generating set 
of S-invariants that all positions in it correspond to positive 
invariants (non-zero coordinates). This means that no 
position in the network can accumulate an infinite number of 
chips. In addition, all positions in the network are reachable, 
i.e. the model does not contain any extra positions. 

The ANN built on the basis of the HCM for determining 
the microcontroller TC contains 3 neurons in the input layer, 
11 and 5 neurons in both hidden layers, and 1 neuron in the 
output layer. A sigmoidal activation function was used for all 
layers. ADD training was performed using a database that 
contained 1900 observations of all parameters. 

The training included 1400 observations, and the 
remaining 500 observations were not included in training 
(test sample). To evaluate the ADD performance, the 
accuracy was calculated: P =  0.9836. 

ANN built on the basis of the Petri net contains 4 hidden 
layers. With the same amount of training and test data 
described above, the training accuracy was P = 0.9741. 

V. CONCLUSION  

The paper proposes a complex method for determining 
the technical condition of electronic devices based on the 
building of a simulation network model (Petri net), a 
heterogeneous cognitive model and the formation of an 
artificial neural network on their basis in the conditions of 
measuring and expert information. 

The use of HCM makes it possible to determine the 
impact degree between parameters, to identify the most 
significant parameters from a variety of parameters, as well 
as to make scientifically based management decisions 
regarding the ED serviceability. The use of a Petri net-based 

model in modeling the process of determining the TC of ED 
allows one to determine which states of the system are 
reachable, to clearly coordinate the interaction of ED 
parameters, and also highlight the most important 
parameters depending on the TC of ED. 

The results obtained showed that HCM-based ADD has a 
high accuracy of  P =0.9836, which means that the model 
allows one to effectively diagnose the ED, as well as predict 
the TC, taking into account the multifactorial nature and 
knowledge of the operational personnel. 
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